{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:26:29Z","timestamp":1730319989459,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":36,"publisher":"ACM","license":[{"start":{"date-parts":[[2018,10,15]],"date-time":"2018-10-15T00:00:00Z","timestamp":1539561600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"Wuhan Science and Technology Bureau","award":["2017010201010111"]},{"name":"Program for HUST Acadamic Frontier Youth Team"},{"name":"National Natural Science Foundation of China","award":["61502188"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2018,10,15]]},"DOI":"10.1145\/3240508.3240564","type":"proceedings-article","created":{"date-parts":[[2018,10,18]],"date-time":"2018-10-18T13:52:08Z","timestamp":1539870728000},"page":"896-904","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":7,"title":["Monocular Camera Based Real-Time Dense Mapping Using Generative Adversarial Network"],"prefix":"10.1145","author":[{"given":"Xin","family":"Yang","sequence":"first","affiliation":[{"name":"Huazhong University of Science and Technology, Wuhan, China"}]},{"given":"Jinyu","family":"Chen","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, Wuhan, China"}]},{"given":"Zhiwei","family":"Wang","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, Wuhan, China"}]},{"given":"Qiaozhe","family":"Zhang","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, Wuhan, China"}]},{"given":"Wenyu","family":"Liu","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, Wuhan, China"}]},{"given":"Chunyuan","family":"Liao","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, Wuhan, China"}]},{"given":"Kwang-Ting","family":"Cheng","sequence":"additional","affiliation":[{"name":"Hong Kong University of Science and Technology, Hong Kong, China"}]}],"member":"320","published-online":{"date-parts":[[2018,10,15]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"OSDI","volume":"16","author":"Abadi Mart\u00edn","year":"2016","unstructured":"Mart\u00edn Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . TensorFlow: A System for Large-Scale Machine Learning . OSDI , Vol. Vol. 16 . 265--283. Mart\u00edn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning. OSDI, Vol. Vol. 16. 265--283."},{"key":"e_1_3_2_1_2_1","volume-title":"Wasserstein gan. arXiv preprint arXiv:1701.07875","author":"Arjovsky Martin","year":"2017","unstructured":"Martin Arjovsky , Soumith Chintala , and L\u00e9on Bottou . 2017. Wasserstein gan. arXiv preprint arXiv:1701.07875 ( 2017 ). Martin Arjovsky, Soumith Chintala, and L\u00e9on Bottou. 2017. Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)."},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2015.7354184"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2013.170"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.304"},{"key":"e_1_3_2_1_6_1","unstructured":"David Eigen Christian Puhrsch and Rob Fergus. 2014. Depth map prediction from a single image using a multi-scale deep network Advances in neural information processing systems. 2366--2374. David Eigen Christian Puhrsch and Rob Fergus. 2014. Depth map prediction from a single image using a multi-scale deep network Advances in neural information processing systems. 2366--2374."},{"key":"e_1_3_2_1_7_1","volume-title":"Direct sparse odometry","author":"Engel Jakob","year":"2018","unstructured":"Jakob Engel , Vladlen Koltun , and Daniel Cremers . 2018. Direct sparse odometry . IEEE transactions on pattern analysis and machine intelligence Vol. 40 , 3 ( 2018 ), 611--625. Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2018. Direct sparse odometry. IEEE transactions on pattern analysis and machine intelligence Vol. 40, 3 (2018), 611--625."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10605-2_54"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126501"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2014.6906584"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46484-8_45"},{"key":"e_1_3_2_1_12_1","volume-title":"Oisin Mac Aodha, and Gabriel J. Brostow","author":"Godard Cl\u00e9ment","year":"2017","unstructured":"Cl\u00e9ment Godard , Oisin Mac Aodha, and Gabriel J. Brostow . 2017 . Unsupervised monocular depth estimation with left-right consistency. In CVPR , Vol. Vol. 2 . 7. Cl\u00e9ment Godard, Oisin Mac Aodha, and Gabriel J. Brostow. 2017. Unsupervised monocular depth estimation with left-right consistency. In CVPR, Vol. Vol. 2. 7."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2016.7487213"},{"key":"e_1_3_2_1_14_1","volume-title":"Courville","author":"Gulrajani Ishaan","year":"2017","unstructured":"Ishaan Gulrajani , Faruk Ahmed , Martin Arjovsky , Vincent Dumoulin , and Aaron C . Courville . 2017 . Improved training of wasserstein gans. In Advances in Neural Information Processing Systems . 5769--5779. Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 2017. Improved training of wasserstein gans. In Advances in Neural Information Processing Systems. 5769--5779."},{"volume-title":"IEEE Intl. Conf. on Robotics and Automation, ICRA","author":"Handa A.","key":"e_1_3_2_1_15_1","unstructured":"A. Handa , T. Whelan , J. B. McDonald , and A. J. Davison . 2014. A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM . In IEEE Intl. Conf. on Robotics and Automation, ICRA . Hong Kong, China. A. Handa, T. Whelan, J. B. McDonald, and A. J. Davison. 2014. A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In IEEE Intl. Conf. on Robotics and Automation, ICRA. Hong Kong, China."},{"key":"e_1_3_2_1_16_1","volume-title":"Efros","author":"Isola Phillip","year":"2017","unstructured":"Phillip Isola , Jun-Yan Zhu , Tinghui Zhou , and Alexei A . Efros . 2017 . Image-to-image translation with conditional adversarial networks. arXiv preprint (2017). Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISMAR.2007.4538852"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10599-4_45"},{"key":"e_1_3_2_1_19_1","volume-title":"2016 Fourth International Conference on. IEEE, 239--248","author":"Laina Iro","year":"2016","unstructured":"Iro Laina , Christian Rupprecht , Vasileios Belagiannis , Federico Tombari , and Nassir Navab . 2016 . Deeper depth prediction with fully convolutional residual networks. In 3D Vision (3DV) , 2016 Fourth International Conference on. IEEE, 239--248 . Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. 2016. Deeper depth prediction with fully convolutional residual networks. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 239--248."},{"volume-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1119--1127","author":"Li Bo","key":"e_1_3_2_1_20_1","unstructured":"Bo Li , Chunhua Shen , Yuchao Dai , Anton van den Hengel, and Mingyi He. 2015. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs . In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1119--1127 . Bo Li, Chunhua Shen, Yuchao Dai, Anton van den Hengel, and Mingyi He. 2015. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1119--1127."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299152"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.97"},{"key":"e_1_3_2_1_23_1","volume-title":"Sparse-to-dense: Depth prediction from sparse depth samples and a single image. arXiv preprint arXiv:1709.07492","author":"Ma Fangchang","year":"2017","unstructured":"Fangchang Ma and Sertac Karaman . 2017 . Sparse-to-dense: Depth prediction from sparse depth samples and a single image. arXiv preprint arXiv:1709.07492 (2017). Fangchang Ma and Sertac Karaman. 2017. Sparse-to-dense: Depth prediction from sparse depth samples and a single image. arXiv preprint arXiv:1709.07492 (2017)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123360"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/tro.2015.2463671"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1090\/conm\/443\/08555"},{"key":"e_1_3_2_1_27_1","volume-title":"Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434","author":"Radford Alec","year":"2015","unstructured":"Alec Radford , Luke Metz , and Soumith Chintala . 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 ( 2015 ). Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2015.7139442"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-33715-4_54"},{"volume-title":"Proc. of the International Conference on Intelligent Robot Systems (IROS).","author":"Sturm J.","key":"e_1_3_2_1_30_1","unstructured":"J. Sturm , N. Engelhard , F. Endres , W. Burgard , and D. Cremers . 2012. A Benchmark for the Evaluation of RGB-D SLAM Systems . In Proc. of the International Conference on Intelligent Robot Systems (IROS). J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. 2012. A Benchmark for the Evaluation of RGB-D SLAM Systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS)."},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"crossref","unstructured":"Christian Szegedy Wei Liu Yangqing Jia Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan Vincent Vanhoucke Andrew Rabinovich etal 2015. Going deeper with convolutions. Cvpr. Christian Szegedy Wei Liu Yangqing Jia Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan Vincent Vanhoucke Andrew Rabinovich et al. 2015. Going deeper with convolutions. Cvpr.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"e_1_3_2_1_32_1","volume-title":"CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction. arXiv preprint arXiv:1704.03489","author":"Tateno Keisuke","year":"2017","unstructured":"Keisuke Tateno , Federico Tombari , Iro Laina , and Nassir Navab . 2017. CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction. arXiv preprint arXiv:1704.03489 ( 2017 ). Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. 2017. CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction. arXiv preprint arXiv:1704.03489 (2017)."},{"volume-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2800--2809","author":"Wang Peng","key":"e_1_3_2_1_33_1","unstructured":"Peng Wang , Xiaohui Shen , Zhe Lin , Scott Cohen , Brian Price , and Alan L. Yuille . 2015. Towards unified depth and semantic prediction from a single image . In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2800--2809 . Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, and Alan L. Yuille. 2015. Towards unified depth and semantic prediction from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2800--2809."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123348"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2016.7759204"},{"key":"e_1_3_2_1_36_1","volume-title":"The BerHu penalty and the grouped effect. arXiv preprint arXiv:1207.6868","author":"Zwald Laurent","year":"2012","unstructured":"Laurent Zwald and Sophie Lambert-Lacroix . 2012. The BerHu penalty and the grouped effect. arXiv preprint arXiv:1207.6868 ( 2012 ). Laurent Zwald and Sophie Lambert-Lacroix. 2012. The BerHu penalty and the grouped effect. arXiv preprint arXiv:1207.6868 (2012)."}],"event":{"name":"MM '18: ACM Multimedia Conference","sponsor":["SIGMM ACM Special Interest Group on Multimedia"],"location":"Seoul Republic of Korea","acronym":"MM '18"},"container-title":["Proceedings of the 26th ACM international conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3240508.3240564","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T06:16:27Z","timestamp":1673072187000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3240508.3240564"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10,15]]},"references-count":36,"alternative-id":["10.1145\/3240508.3240564","10.1145\/3240508"],"URL":"https:\/\/doi.org\/10.1145\/3240508.3240564","relation":{},"subject":[],"published":{"date-parts":[[2018,10,15]]},"assertion":[{"value":"2018-10-15","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}