{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:43:14Z","timestamp":1735584194511},"reference-count":36,"publisher":"Association for Computing Machinery (ACM)","issue":"4","license":[{"start":{"date-parts":[[2018,7,30]],"date-time":"2018-07-30T00:00:00Z","timestamp":1532908800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"European Research Council","award":["715767"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Graph."],"published-print":{"date-parts":[[2018,8,31]]},"abstract":"We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a three-dimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body.<\/jats:p>","DOI":"10.1145\/3197517.3201325","type":"journal-article","created":{"date-parts":[[2018,7,31]],"date-time":"2018-07-31T15:56:23Z","timestamp":1533052583000},"page":"1-10","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":67,"title":["Learning three-dimensional flow for interactive aerodynamic design"],"prefix":"10.1145","volume":"37","author":[{"given":"Nobuyuki","family":"Umetani","sequence":"first","affiliation":[{"name":"Autodesk Research, Toronto, Canada"}]},{"given":"Bernd","family":"Bickel","sequence":"additional","affiliation":[{"name":"IST Austria, Vienna, Austria"}]}],"member":"320","published-online":{"date-parts":[[2018,7,30]]},"reference":[{"key":"e_1_2_2_1_1","volume-title":"Geodesic Convolutional Shape Optimization. CoRR abs\/1802.04016","author":"Baqu\u00e9 Pierre","year":"2018","unstructured":"Pierre Baqu\u00e9 , Edoardo Remelli , Fran\u00e7ois Fleuret , and Pascal Fua . 2018. Geodesic Convolutional Shape Optimization. CoRR abs\/1802.04016 ( 2018 ). arXiv:1802.04016 http:\/\/arxiv.org\/abs\/1802.04016 Pierre Baqu\u00e9, Edoardo Remelli, Fran\u00e7ois Fleuret, and Pascal Fua. 2018. Geodesic Convolutional Shape Optimization. CoRR abs\/1802.04016 (2018). arXiv:1802.04016 http:\/\/arxiv.org\/abs\/1802.04016"},{"key":"e_1_2_2_2_1","unstructured":"B. Bonev L. Prantl and N. Thuerey. 2017. Pre-computed Liquid Spaces with Generative Neural Networks and Optical Flow. ArXiv e-prints (April 2017). arXiv:cs.GR\/1704.07854 B. Bonev L. Prantl and N. Thuerey. 2017. Pre-computed Liquid Spaces with Generative Neural Networks and Optical Flow. ArXiv e-prints (April 2017). arXiv:cs.GR\/1704.07854"},{"key":"e_1_2_2_3_1","doi-asserted-by":"crossref","unstructured":"R. Buchheim R. Unger P. Jousserandot E. Mercker F. K. Schenkel Y. Nishimura and D. J. Wilsden. 1983. Comparison Tests Between Major European and North American Automotive Wind Tunnels. In SAE Technical Paper. SAE International. R. Buchheim R. Unger P. Jousserandot E. Mercker F. K. Schenkel Y. Nishimura and D. J. Wilsden. 1983. Comparison Tests Between Major European and North American Automotive Wind Tunnels. In SAE Technical Paper. SAE International.","DOI":"10.4271\/830301"},{"key":"e_1_2_2_4_1","unstructured":"A. X. Chang T. Funkhouser L. Guibas P. Hanrahan Q. Huang Z. Li S. Savarese M. Savva S. Song H. Su J. Xiao L. Yi and F. Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. ArXiv e-prints (Dec. 2015). arXiv:cs.GR\/1512.03012 A. X. Chang T. Funkhouser L. Guibas P. Hanrahan Q. Huang Z. Li S. Savarese M. Savva S. Song H. Su J. Xiao L. Yi and F. Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. ArXiv e-prints (Dec. 2015). arXiv:cs.GR\/1512.03012"},{"key":"e_1_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073643"},{"key":"e_1_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/1730804.1730807"},{"key":"e_1_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/2077341.2077351"},{"key":"e_1_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1145\/2897824.2925957"},{"key":"e_1_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.5555\/775492.775496"},{"key":"e_1_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/344779.344831"},{"key":"e_1_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/0893-6080(91)90009-T"},{"key":"e_1_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/2602141"},{"key":"e_1_2_2_13_1","volume-title":"Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering","unstructured":"Hucho. 1998. Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering . Society of Automotive Engineers , Warrendale, PA . Hucho. 1998. Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Society of Automotive Engineers, Warrendale, PA."},{"key":"e_1_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/1073204.1073229"},{"key":"e_1_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2461987"},{"key":"e_1_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2816795.2818129"},{"key":"e_1_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/2766919"},{"key":"e_1_2_2_18_1","unstructured":"Mojang. 2009. Minecraft. (2009). Mojang. 2009. Minecraft. (2009)."},{"key":"e_1_2_2_19_1","volume-title":"Guibas","author":"Qi Charles Ruizhongtai","year":"2016","unstructured":"Charles Ruizhongtai Qi , Hao Su , Kaichun Mo , and Leonidas J . Guibas . 2016 . PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CoRR abs\/1612.00593 (2016). arXiv:1612.00593 http:\/\/arxiv.org\/abs\/1612.00593 Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CoRR abs\/1612.00593 (2016). arXiv:1612.00593 http:\/\/arxiv.org\/abs\/1612.00593"},{"key":"e_1_2_2_20_1","volume-title":"Williams","author":"Rasmussen Carl Edward","year":"2005","unstructured":"Carl Edward Rasmussen and Christopher K. I . Williams . 2005 . Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press . Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press."},{"key":"e_1_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073688"},{"key":"e_1_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.5555\/2627435.2670313"},{"key":"e_1_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/2601097.2601196"},{"key":"e_1_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2462006"},{"key":"e_1_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.114"},{"key":"e_1_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/1015706.1015810"},{"key":"e_1_2_2_27_1","volume-title":"Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR abs\/1607.03597","author":"Tompson Jonathan","year":"2016","unstructured":"Jonathan Tompson , Kristofer Schlachter , Pablo Sprechmann , and Ken Perlin . 2016. Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR abs\/1607.03597 ( 2016 ). arXiv:1607.03597 http:\/\/arxiv.org\/abs\/1607.03597 Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2016. Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR abs\/1607.03597 (2016). arXiv:1607.03597 http:\/\/arxiv.org\/abs\/1607.03597"},{"key":"e_1_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/1141911.1141962"},{"key":"e_1_2_2_29_1","unstructured":"K. Um X. Hu and N. Thuerey. 2017. Liquid Splash Modeling with Neural Networks. ArXiv e-prints (April 2017). arXiv:cs.GR\/1704.04456 K. Um X. Hu and N. Thuerey. 2017. Liquid Splash Modeling with Neural Networks. ArXiv e-prints (April 2017). arXiv:cs.GR\/1704.04456"},{"key":"e_1_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/3145749.3145758"},{"key":"e_1_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/2601097.2601129"},{"key":"e_1_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073608"},{"key":"e_1_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/1531326.1531345"},{"key":"e_1_2_2_34_1","volume-title":"3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CoRR abs\/1406.5670","author":"Wu Zhirong","year":"2014","unstructured":"Zhirong Wu , Shuran Song , Aditya Khosla , Xiaoou Tang , and Jianxiong Xiao . 2014. 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CoRR abs\/1406.5670 ( 2014 ). http:\/\/arxiv.org\/abs\/1406.5670 Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong Xiao. 2014. 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CoRR abs\/1406.5670 (2014). http:\/\/arxiv.org\/abs\/1406.5670"},{"key":"e_1_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2988458.2988473"},{"key":"e_1_2_2_36_1","unstructured":"Olek C Zienkiewicz Robert L Taylor and P. Nithiarasu. 2013. The Finite Element Method for Fluid Dynamics Seventh Edition (7 ed.). Butterworth-Heinemann. http:\/\/amazon.com\/o\/ASIN\/1856176355\/ Olek C Zienkiewicz Robert L Taylor and P. Nithiarasu. 2013. The Finite Element Method for Fluid Dynamics Seventh Edition (7 ed.). Butterworth-Heinemann. http:\/\/amazon.com\/o\/ASIN\/1856176355\/"}],"container-title":["ACM Transactions on Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3197517.3201325","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,31]],"date-time":"2022-12-31T20:25:51Z","timestamp":1672518351000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3197517.3201325"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7,30]]},"references-count":36,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2018,8,31]]}},"alternative-id":["10.1145\/3197517.3201325"],"URL":"https:\/\/doi.org\/10.1145\/3197517.3201325","relation":{},"ISSN":["0730-0301","1557-7368"],"issn-type":[{"value":"0730-0301","type":"print"},{"value":"1557-7368","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,7,30]]},"assertion":[{"value":"2018-07-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}