{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:50:49Z","timestamp":1726761049755},"publisher-location":"New York, New York, USA","reference-count":28,"publisher":"ACM Press","license":[{"start":{"date-parts":[[2018,4,23]],"date-time":"2018-04-23T00:00:00Z","timestamp":1524441600000},"content-version":"vor","delay-in-days":112,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1145\/3184558.3191577","type":"proceedings-article","created":{"date-parts":[[2018,4,18]],"date-time":"2018-04-18T14:04:25Z","timestamp":1524060265000},"page":"1353-1357","source":"Crossref","is-referenced-by-count":63,"title":["Combining Neural, Statistical and External Features for Fake News Stance Identification"],"prefix":"10.1145","author":[{"given":"Gaurav","family":"Bhatt","sequence":"first","affiliation":[{"name":"Indian Institute of Technology Roorkee, Roorkee, India"}]},{"given":"Aman","family":"Sharma","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Roorkee, Roorkee, India"}]},{"given":"Shivam","family":"Sharma","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Roorkee, Roorkee, India"}]},{"given":"Ankush","family":"Nagpal","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Roorkee, Roorkee, India"}]},{"given":"Balasubramanian","family":"Raman","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Roorkee, Roorkee, India"}]},{"given":"Ankush","family":"Mittal","sequence":"additional","affiliation":[{"name":"Graphic Era University, Roorkee, India"}]}],"member":"320","reference":[{"key":"key-10.1145\/3184558.3191577-1","unstructured":"Benjamin Schiller Andreas Hanselowski, Avinesh PVS and Felix Caspelherr. 2017. Athenefnc. https:\/\/github.com\/hanselowski\/athene_system. (2017)."},{"key":"key-10.1145\/3184558.3191577-2","doi-asserted-by":"crossref","unstructured":"Isabelle Augenstein, Tim Rocktäschel, Andreas Vlachos, and Kalina Bontcheva. 2016. Stance detection with bidirectional conditional encoding. arXiv preprint arXiv:1606.05464 (2016).","DOI":"10.18653\/v1\/D16-1084"},{"key":"key-10.1145\/3184558.3191577-3","doi-asserted-by":"crossref","unstructured":"Isabelle Augenstein, Andreas Vlachos, and Kalina Bontcheva. 2016. USFD at SemEval-2016 Task 6: Any-Target Stance Detection on Twitter with Autoencoders. In SemEval@ NAACL-HLT. 389--393.","DOI":"10.18653\/v1\/S16-1063"},{"key":"key-10.1145\/3184558.3191577-4","doi-asserted-by":"crossref","unstructured":"Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2013. Predicting information credibility in time-sensitive social media. Internet Research 23, 5 (2013), 560--588.","DOI":"10.1108\/IntR-05-2012-0095"},{"key":"key-10.1145\/3184558.3191577-5","doi-asserted-by":"crossref","unstructured":"Tong Chen, Lin Wu, Xue Li, Jun Zhang, Hongzhi Yin, and Yang Wang. 2017. Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection. arXiv preprint arXiv:1704.05973 (2017).","DOI":"10.1007\/978-3-030-04503-6_4"},{"key":"key-10.1145\/3184558.3191577-6","doi-asserted-by":"crossref","unstructured":"Yi-Chin Chen, Zhao-Yand Liu, and Hung-Yu Kao. 2017. IKM at SemEval-2017 Task 8: Convolutional Neural Networks for Stance Detection and Rumor Verification. Proceedings of SemEval. ACL (2017).","DOI":"10.18653\/v1\/S17-2081"},{"key":"key-10.1145\/3184558.3191577-7","unstructured":"Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)."},{"key":"key-10.1145\/3184558.3191577-8","unstructured":"Richard Davis and Chris Proctor. 2017. Fake News, Real Consequences: Recruiting Neural Networks for the Fight Against Fake News. https:\/\/web.stanford.edu\/ class\/cs224n\/reports\/2761239. (2017)."},{"key":"key-10.1145\/3184558.3191577-9","unstructured":"Delip Rao Dean Pomerleau. 2017. Fake News Challenge. http:\/\/www. fakenewschallenge.org\/. (2017)."},{"key":"key-10.1145\/3184558.3191577-10","doi-asserted-by":"crossref","unstructured":"Leon Derczynski, Kalina Bontcheva, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz Zubiaga. 2017. SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours. arXiv preprint arXiv:1704.05972 (2017).","DOI":"10.18653\/v1\/S17-2006"},{"key":"key-10.1145\/3184558.3191577-11","unstructured":"Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou. 2015. Applying deep learning to answer selection: A study and an open task. In Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop on. IEEE, 813--820."},{"key":"key-10.1145\/3184558.3191577-12","doi-asserted-by":"crossref","unstructured":"William Ferreira and Andreas Vlachos. 2016. Emergent: a novel data-set for stance classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. ACL.","DOI":"10.18653\/v1\/N16-1138"},{"key":"key-10.1145\/3184558.3191577-13","doi-asserted-by":"crossref","unstructured":"Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18, 5 (2005), 602--610.","DOI":"10.1016\/j.neunet.2005.06.042"},{"key":"key-10.1145\/3184558.3191577-14","doi-asserted-by":"crossref","unstructured":"Hua He, Kevin Gimpel, and Jimmy J Lin. 2015. Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Networks. In EMNLP. 1576-- 1586.","DOI":"10.18653\/v1\/D15-1181"},{"key":"key-10.1145\/3184558.3191577-15","unstructured":"Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in neural information processing systems. 3294--3302."},{"key":"key-10.1145\/3184558.3191577-16","doi-asserted-by":"crossref","unstructured":"Todor Mihaylov and Preslav Nakov. 2016. SemanticZ at SemEval-2016 Task 3: Ranking Relevant Answers in Community Question Answering Using Semantic Similarity Based on Fine-tuned Word Embeddings. In SemEval@ NAACL-HLT. 879--886.","DOI":"10.18653\/v1\/S16-1136"},{"key":"key-10.1145\/3184558.3191577-17","unstructured":"Paul Neculoiu, Maarten Versteegh, Mihai Rotaru, and Textkernel BV Amsterdam. 2016. Learning Text Similarity with Siamese Recurrent Networks. ACL 2016 (2016), 148."},{"key":"key-10.1145\/3184558.3191577-18","unstructured":"NYTimes. 2016. As fake news spreads lies, more readers shrug at the truth. https: \/\/www.nytimes.com\/2016\/12\/06\/us\/fake-news-partisan-republican-democrat. html. (2016)."},{"key":"key-10.1145\/3184558.3191577-19","unstructured":"Stephen Pfohl, Oskar Triebe, and Ferdinand Legros. 2017. Stance Detection for the Fake News Challenge with Attention and Conditional Encoding. (2017)."},{"key":"key-10.1145\/3184558.3191577-20","unstructured":"Benjamin Riedel, Isabelle Augenstein, Georgios P Spithourakis, and Sebastian Riedel. 2017. A simple but tough-to-beat baseline for the Fake News Challenge stance detection task. arXiv preprint arXiv:1707.03264 (2017)."},{"key":"key-10.1145\/3184558.3191577-21","unstructured":"Jingbo Shang. 2017. Chips ahoy! at Fake News Challenge. https:\/\/github.com\/ shangjingbo1226\/fnc-1. (2017)."},{"key":"key-10.1145\/3184558.3191577-22","unstructured":"Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)."},{"key":"key-10.1145\/3184558.3191577-23","unstructured":"Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2015. Lstmbased deep learning models for non-factoid answer selection. arXiv preprint arXiv:1511.04108 (2015)."},{"key":"key-10.1145\/3184558.3191577-24","doi-asserted-by":"crossref","unstructured":"Liu Yang, Qingyao Ai, Damiano Spina, Ruey-Cheng Chen, Liang Pang, W Bruce Croft, Jiafeng Guo, and Falk Scholer. 2016. Beyond factoid QA: Effective methods for non-factoid answer sentence retrieval. In European Conference on Information Retrieval. Springer, 115--128.","DOI":"10.1007\/978-3-319-30671-1_9"},{"key":"key-10.1145\/3184558.3191577-25","doi-asserted-by":"crossref","unstructured":"Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A Challenge Dataset for Open-Domain Question Answering. In EMNLP. 2013--2018.","DOI":"10.18653\/v1\/D15-1237"},{"key":"key-10.1145\/3184558.3191577-26","unstructured":"Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. 2014. Deep learning for answer sentence selection. arXiv preprint arXiv:1412.1632 (2014)."},{"key":"key-10.1145\/3184558.3191577-27","unstructured":"Sean Baird Yuxi Pan, Doug Sibley. 2017. Talos. http:\/\/blog.talosintelligence.com\/ 2017\/06\/. (2017)."},{"key":"key-10.1145\/3184558.3191577-28","doi-asserted-by":"crossref","unstructured":"Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob Procter, Michal Lukasik, Kalina Bontcheva, Trevor Cohn, and Isabelle Augenstein. 2018. Discourse-aware rumour stance classification in social media using sequential classifiers. Information Processing & Management 54, 2 (2018), 273--290.","DOI":"10.1016\/j.ipm.2017.11.009"}],"event":{"number":"2018","sponsor":["IW3C2, International World Wide Web Conference Committee","SIGWEB, ACM Special Interest Group on Hypertext, Hypermedia, and Web"],"acronym":"WWW '18","name":"Companion of the The Web Conference 2018","start":{"date-parts":[[2018,4,23]]},"location":"Lyon, France","end":{"date-parts":[[2018,4,27]]}},"container-title":["Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW '18"],"original-title":[],"link":[{"URL":"http:\/\/dl.acm.org\/ft_gateway.cfm?id=3191577&ftid=1958277&dwn=1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,16]],"date-time":"2019-10-16T00:47:11Z","timestamp":1571186831000},"score":1,"resource":{"primary":{"URL":"http:\/\/dl.acm.org\/citation.cfm?doid=3184558.3191577"}},"subtitle":[],"proceedings-subject":"The Web Conference 2018","short-title":[],"issued":{"date-parts":[[2018]]},"references-count":28,"URL":"https:\/\/doi.org\/10.1145\/3184558.3191577","relation":{},"subject":[],"published":{"date-parts":[[2018]]}}}