{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,23]],"date-time":"2025-04-23T09:28:37Z","timestamp":1745400517006,"version":"3.37.3"},"reference-count":186,"publisher":"Association for Computing Machinery (ACM)","issue":"2","license":[{"start":{"date-parts":[[2018,2,20]],"date-time":"2018-02-20T00:00:00Z","timestamp":1519084800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Comput. Surv."],"published-print":{"date-parts":[[2019,3,31]]},"abstract":"In the last few decades, Structure from Motion (SfM) and visual Simultaneous Localization and Mapping (visual SLAM) techniques have gained significant interest from both the computer vision and robotic communities. Many variants of these techniques have started to make an impact in a wide range of applications, including robot navigation and augmented reality. However, despite some remarkable results in these areas, most SfM and visual SLAM techniques operate based on the assumption that the observed environment is static. However, when faced with moving objects, overall system accuracy can be jeopardized. In this article, we present for the first time a survey of visual SLAM and SfM techniques that are targeted toward operation in dynamic environments. We identify three main problems: how to perform reconstruction (robust visual SLAM), how to segment and track dynamic objects, and how to achieve joint motion segmentation and reconstruction. Based on this categorization, we provide a comprehensive taxonomy of existing approaches. Finally, the advantages and disadvantages of each solution class are critically discussed from the perspective of practicality and robustness.<\/jats:p>","DOI":"10.1145\/3177853","type":"journal-article","created":{"date-parts":[[2018,2,20]],"date-time":"2018-02-20T16:45:32Z","timestamp":1519145132000},"page":"1-36","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":288,"title":["Visual SLAM and Structure from Motion in Dynamic Environments"],"prefix":"10.1145","volume":"51","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8056-4919","authenticated-orcid":false,"given":"Muhamad Risqi U.","family":"Saputra","sequence":"first","affiliation":[{"name":"Department of Computer Science, University of Oxford, Oxford, United Kingdom"}]},{"given":"Andrew","family":"Markham","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University of Oxford, Oxford, United Kingdom"}]},{"given":"Niki","family":"Trigoni","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University of Oxford, Oxford, United Kingdom"}]}],"member":"320","published-online":{"date-parts":[[2018,2,20]]},"reference":[{"key":"e_1_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/TAC.1983.1103230"},{"key":"e_1_2_1_2_1","volume-title":"Int. Symp. Inf. Theory. 267--281","author":"Akaike Hirotogu","year":"1973","unstructured":"Hirotogu Akaike . 1973 . Information theory and an extension of the maximum likelihood principle . In Int. Symp. Inf. Theory. 267--281 . Hirotogu Akaike. 1973. Information theory and an extension of the maximum likelihood principle. In Int. Symp. Inf. Theory. 267--281."},{"key":"e_1_2_1_3_1","first-page":"1","article-title":"Nonrigid structure from motion in trajectory space","volume":"1","author":"Akhter Ijaz","year":"2008","unstructured":"Ijaz Akhter , Sohaib Khan , Yaser Sheikh , and Takeo Kanade . 2008 . Nonrigid structure from motion in trajectory space . In Adv. Neural Inf. Process. Syst. , Vol. 1. 1 -- 8 . Ijaz Akhter, Sohaib Khan, Yaser Sheikh, and Takeo Kanade. 2008. Nonrigid structure from motion in trajectory space. In Adv. Neural Inf. Process. Syst., Vol. 1. 1--8.","journal-title":"Adv. Neural Inf. Process. Syst."},{"volume-title":"IEEE Int. Conf. Robot. Autom. 1290--1297","author":"Alcantarilla Pablo F.","key":"e_1_2_1_4_1","unstructured":"Pablo F. Alcantarilla , Jos\u00e9 J. Yebes , Javier Almaz\u00e1n , and Luis M. Bergasa . 2012. On combining visual slam and dense scene flow to increase the robustness of localization and mapping in dynamic environments . In IEEE Int. Conf. Robot. Autom. 1290--1297 . Pablo F. Alcantarilla, Jos\u00e9 J. Yebes, Javier Almaz\u00e1n, and Luis M. Bergasa. 2012. On combining visual slam and dense scene flow to increase the robustness of localization and mapping in dynamic environments. In IEEE Int. Conf. Robot. Autom. 1290--1297."},{"key":"e_1_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.1999.784609"},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/34.845377"},{"key":"e_1_2_1_7_1","volume-title":"Duc Tung Dinh, and Gerhard Rigoll","author":"Babaee Mohammadreza","year":"2017","unstructured":"Mohammadreza Babaee , Duc Tung Dinh, and Gerhard Rigoll . 2017 . A deep convolutional neural network for background subtraction. In arXiv:1702.01731. Mohammadreza Babaee, Duc Tung Dinh, and Gerhard Rigoll. 2017. A deep convolutional neural network for background subtraction. In arXiv:1702.01731."},{"key":"e_1_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2007.09.014"},{"volume-title":"Eur. Conf. Comput. Vis. 85--96","author":"Beardsley Paul A.","key":"e_1_2_1_9_1","unstructured":"Paul A. Beardsley , Andrew Zisserman , and David W. Murray . 1994. Navigation using affine structure from motion . In Eur. Conf. Comput. Vis. 85--96 . Paul A. Beardsley, Andrew Zisserman, and David W. Murray. 1994. Navigation using affine structure from motion. In Eur. Conf. Comput. Vis. 85--96."},{"key":"e_1_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10846-008-9235-4"},{"volume-title":"Pyramidal implementation of the affine Lucas Kanade feature tracker - Description of the algorithm","author":"Bouguet Jean-Yves","key":"e_1_2_1_11_1","unstructured":"Jean-Yves Bouguet . 2000. Pyramidal implementation of the affine Lucas Kanade feature tracker - Description of the algorithm . Intel Corp. Microprocess. Res. Labs . Jean-Yves Bouguet. 2000. Pyramidal implementation of the affine Lucas Kanade feature tracker - Description of the algorithm. Intel Corp. Microprocess. Res. Labs."},{"key":"e_1_2_1_12_1","volume-title":"Boult and Lisa Gottesfeld Brown","author":"Terrance","year":"1991","unstructured":"Terrance E. Boult and Lisa Gottesfeld Brown . 1991 . Factorization-based segmentation of motions. In IEEE Work. Vis. Motion . Terrance E. Boult and Lisa Gottesfeld Brown. 1991. Factorization-based segmentation of motions. In IEEE Work. Vis. Motion."},{"key":"e_1_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2000.854941"},{"key":"e_1_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2010.232"},{"key":"e_1_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2017.7989023"},{"key":"e_1_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/7.640276"},{"key":"e_1_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.5555\/1888089.1888148"},{"key":"e_1_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2011.02.007"},{"volume-title":"IEEE\/RSJ Int. Conf. Intell. Robot. Syst.","author":"Chaves Stephen M.","key":"e_1_2_1_19_1","unstructured":"Stephen M. Chaves , Ayoung Kim , and Ryan M. Eustice . 2014. Opportunistic sampling-based planning for active visual SLAM . In IEEE\/RSJ Int. Conf. Intell. Robot. Syst. Stephen M. Chaves, Ayoung Kim, and Ryan M. Eustice. 2014. Opportunistic sampling-based planning for active visual SLAM. In IEEE\/RSJ Int. Conf. Intell. Robot. Syst."},{"key":"e_1_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2013.2286106"},{"volume-title":"IEEE Int. Conf. Robot. Autom. 5758--5765","author":"Chhaya Falak","key":"e_1_2_1_21_1","unstructured":"Falak Chhaya , Dinesh Reddy , Sarthak Upadhyay , Visesh Chari , M. Zeeshan Zia , and K. Madhava Krishna . 2016. Monocular reconstruction of vehicles: Combining SLAM with shape priors . In IEEE Int. Conf. Robot. Autom. 5758--5765 . Falak Chhaya, Dinesh Reddy, Sarthak Upadhyay, Visesh Chari, M. Zeeshan Zia, and K. Madhava Krishna. 2016. Monocular reconstruction of vehicles: Combining SLAM with shape priors. In IEEE Int. Conf. Robot. Autom. 5758--5765."},{"key":"e_1_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2005.221"},{"key":"e_1_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISWC.2008.4911575"},{"key":"e_1_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.5555\/839277.840002"},{"key":"e_1_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1008000628999"},{"key":"e_1_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364908090961"},{"key":"e_1_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-013-0684-2"},{"key":"e_1_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.104"},{"key":"e_1_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.5555\/946247.946734"},{"key":"e_1_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1142\/S2301385015400026"},{"key":"e_1_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICARCV.2014.7064446"},{"key":"e_1_2_1_32_1","unstructured":"Daniel DeTone Tomasz Malisiewicz and Andrew Rabinovich. 2016. Deep image homography estimation. In arXiv:1606.03798. Daniel DeTone Tomasz Malisiewicz and Andrew Rabinovich. 2016. Deep image homography estimation. In arXiv:1606.03798."},{"key":"e_1_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.316"},{"key":"e_1_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206547"},{"key":"e_1_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.57"},{"key":"e_1_2_1_36_1","volume-title":"Eur. Conf. Comput. Vis. 834--849","author":"Engel Jakob","year":"2014","unstructured":"Jakob Engel , Thomas Sch , and Daniel Cremers . 2014 . LSD-SLAM: Direct monocular SLAM . In Eur. Conf. Comput. Vis. 834--849 . Jakob Engel, Thomas Sch, and Daniel Cremers. 2014. LSD-SLAM: Direct monocular SLAM. In Eur. Conf. Comput. Vis. 834--849."},{"key":"e_1_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1145\/358669.358692"},{"key":"e_1_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299035"},{"key":"e_1_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1109\/MRA.2012.2182810"},{"key":"e_1_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-012-9365-8"},{"key":"e_1_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2012.2197158"},{"key":"e_1_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2003.1217599"},{"key":"e_1_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.robot.2014.11.009"},{"key":"e_1_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1008026310903"},{"key":"e_1_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/IVS.2011.5940405"},{"key":"e_1_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.robot.2009.07.026"},{"key":"e_1_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298676"},{"key":"e_1_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2016.7899807"},{"key":"e_1_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2007.383235"},{"key":"e_1_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2001.990963"},{"volume-title":"IEEE Int. Conf. Syst. Man Cybern. 3471--3478","author":"Gross H. M.","key":"e_1_2_1_51_1","unstructured":"H. M. Gross , H. J. Boehme , C. Schroeter , S. Mueller , A. Koenig , Ch. Martin , M. Merten , and A. Bley . 2008. Shopbot: Progress in developing an interactive mobile shopping assistant for everyday use . In IEEE Int. Conf. Syst. Man Cybern. 3471--3478 . H. M. Gross, H. J. Boehme, C. Schroeter, S. Mueller, A. Koenig, Ch. Martin, M. Merten, and A. Bley. 2008. Shopbot: Progress in developing an interactive mobile shopping assistant for everyday use. In IEEE Int. Conf. Syst. Man Cybern. 3471--3478."},{"key":"e_1_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.09.116"},{"key":"e_1_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1038\/293133a0"},{"key":"e_1_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1023\/B:VISI.0000025801.70038.c7"},{"key":"e_1_2_1_55_1","doi-asserted-by":"crossref","unstructured":"Ankur Handa Michael Bloesch Viorica Patraucean Simon Stent John McCormac and Andrew Davison. 2016. gvnn: Neural network library for geometric computer vision. In arXiv:1607.07405. Ankur Handa Michael Bloesch Viorica Patraucean Simon Stent John McCormac and Andrew Davison. 2016. gvnn: Neural network library for geometric computer vision. In arXiv:1607.07405.","DOI":"10.1007\/978-3-319-49409-8_9"},{"key":"e_1_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.5244\/C.4.15"},{"key":"e_1_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.5244\/C.2.23"},{"key":"e_1_2_1_58_1","first-page":"1","article-title":"PowerFactorization: 3D reconstruction with missing or uncertain data","volume":"74","author":"Hartley Richard","year":"2003","unstructured":"Richard Hartley and Frederik Schaffalitzky . 2003 . PowerFactorization: 3D reconstruction with missing or uncertain data . In Aust. Adv. Work. Comput. Vis. , Vol. 74. 1 -- 9 . Richard Hartley and Frederik Schaffalitzky. 2003. PowerFactorization: 3D reconstruction with missing or uncertain data. In Aust. Adv. Work. Comput. Vis., Vol. 74. 1--9.","journal-title":"Aust. Adv. Work. Comput. Vis."},{"key":"e_1_2_1_59_1","volume-title":"Multiple View Geometry in Computer Vision","author":"Hartley Richard","unstructured":"Richard Hartley and Andrew Zisserman . 2004. Multiple View Geometry in Computer Vision ( 2 nd ed.). Cambridge University Press . Richard Hartley and Andrew Zisserman. 2004. Multiple View Geometry in Computer Vision (2nd ed.). Cambridge University Press.","edition":"2"},{"key":"e_1_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1006\/cviu.1997.0547"},{"key":"e_1_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2001.991006"},{"key":"e_1_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1016\/0004-3702(81)90024-2"},{"key":"e_1_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2005.1544998"},{"key":"e_1_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.265351"},{"key":"e_1_2_1_65_1","volume-title":"IEEE Int. Conf. Comput. Vis.","author":"Ichimura Naoyuki","year":"1999","unstructured":"Naoyuki Ichimura . 1999 . Motion segmentation based on factorization method and discriminant critea . In IEEE Int. Conf. Comput. Vis. Naoyuki Ichimura. 1999. Motion segmentation based on factorization method and discriminant critea. In IEEE Int. Conf. Comput. Vis."},{"key":"e_1_2_1_66_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.179"},{"key":"e_1_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364910388963"},{"key":"e_1_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2011.239"},{"key":"e_1_2_1_69_1","doi-asserted-by":"publisher","DOI":"10.5555\/645316.649287"},{"key":"e_1_2_1_70_1","doi-asserted-by":"publisher","DOI":"10.1023\/B:JMIV.0000026555.79056.b8"},{"volume-title":"Statistical Optimization for Geometric Computation: Theory and Practice","author":"Kanatani Kenichi","key":"e_1_2_1_71_1","unstructured":"Kenichi Kanatani . 1996. Statistical Optimization for Geometric Computation: Theory and Practice . Elsevier . Kenichi Kanatani. 1996. Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier."},{"key":"e_1_2_1_72_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2001.937679"},{"key":"e_1_2_1_73_1","volume-title":"Asian Conf. Comput. Vis.","author":"Kanatani Kenichi","year":"2002","unstructured":"Kenichi Kanatani and Chikara Matsunaga . 2002 . Estimating the number of independent motions for multibody motion segmentation . In Asian Conf. Comput. Vis. Kenichi Kanatani and Chikara Matsunaga. 2002. Estimating the number of independent motions for multibody motion segmentation. In Asian Conf. Comput. Vis."},{"key":"e_1_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-92957-4_53"},{"key":"e_1_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISMAR.2007.4538852"},{"key":"e_1_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISMAR.2009.5336495"},{"key":"e_1_2_1_77_1","unstructured":"Kishore Konda and Roland Memisevic. 2013. Unsupervised learning of depth and motion. In arXiv:1312.3429. Kishore Konda and Roland Memisevic. 2013. Unsupervised learning of depth and motion. In arXiv:1312.3429."},{"key":"e_1_2_1_78_1","doi-asserted-by":"publisher","DOI":"10.5220\/0005299304860490"},{"key":"e_1_2_1_79_1","volume-title":"Hinton","author":"Krizhevsky Alex","year":"2012","unstructured":"Alex Krizhevsky , Ilya Sutskever , and Geoffrey E . Hinton . 2012 . ImageNet classification with deep convolutional neural networks. In Adv. Neural Inf. Process. Syst . 1--9. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Adv. Neural Inf. Process. Syst. 1--9."},{"key":"e_1_2_1_80_1","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.23"},{"key":"e_1_2_1_81_1","volume-title":"IEEE Int. Conf. Robot. Autom. 3607--3613","author":"Kummerle Rainer","year":"2011","unstructured":"Rainer Kummerle , Giorgio Grisetti , Hauke Strasdat , Kurt Konolige , and Wolfram Burgard . 2011 . G2o: A general framework for graph optimization . In IEEE Int. Conf. Robot. Autom. 3607--3613 . Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. 2011. G2o: A general framework for graph optimization. In IEEE Int. Conf. Robot. Autom. 3607--3613."},{"key":"e_1_2_1_82_1","doi-asserted-by":"publisher","DOI":"10.1145\/1924559.1924593"},{"key":"e_1_2_1_83_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126482"},{"key":"e_1_2_1_84_1","doi-asserted-by":"publisher","DOI":"10.5555\/1732643.1732752"},{"key":"e_1_2_1_85_1","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.32"},{"key":"e_1_2_1_86_1","volume-title":"Ng","author":"Le Quoc V.","year":"2011","unstructured":"Quoc V. Le , Alexandre Karpenko , Jiquan Ngiam , and Andrew Y . Ng . 2011 . ICA with reconstruction cost for efficient overcomplete feature learning. In Adv. Neural Inf. Process. Syst . 1--9. Quoc V. Le, Alexandre Karpenko, Jiquan Ngiam, and Andrew Y. Ng. 2011. ICA with reconstruction cost for efficient overcomplete feature learning. In Adv. Neural Inf. Process. Syst. 1--9."},{"volume-title":"Int. Conf. Mach. Learn. 38115","author":"Le Quoc V.","key":"e_1_2_1_87_1","unstructured":"Quoc V. Le , Marc\u2019Aurelio Ranzato , Rajat Monga , Matthieu Devin , Kai Chen , Greg S. Corrado , Jeff Dean , and Andrew Y. Ng . 2011. Building high-level features using large scale unsupervised learning . In Int. Conf. Mach. Learn. 38115 . Quoc V. Le, Marc\u2019Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeff Dean, and Andrew Y. Ng. 2011. Building high-level features using large scale unsupervised learning. In Int. Conf. Mach. Learn. 38115."},{"key":"e_1_2_1_88_1","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"e_1_2_1_89_1","volume-title":"17th IEEE Int. Conf. Intell. Transp. Syst. 2629--2635","author":"Lee Kuan Hui","year":"2014","unstructured":"Kuan Hui Lee , Jenq Neng Hwang , Greg Okapal , and James Pitton . 2014 . Driving recorder based on-road pedestrian tracking using visual SLAM and constrained multiple-kernel . In 17th IEEE Int. Conf. Intell. Transp. Syst. 2629--2635 . Kuan Hui Lee, Jenq Neng Hwang, Greg Okapal, and James Pitton. 2014. Driving recorder based on-road pedestrian tracking using visual SLAM and constrained multiple-kernel. In 17th IEEE Int. Conf. Intell. Transp. Syst. 2629--2635."},{"key":"e_1_2_1_90_1","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2016.2557763"},{"key":"e_1_2_1_91_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126542"},{"key":"e_1_2_1_92_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364914554813"},{"key":"e_1_2_1_93_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2007.383090"},{"volume-title":"IEEE Int. Conf. Robot. Autom.","author":"Lim Hyon","key":"e_1_2_1_94_1","unstructured":"Hyon Lim , Jongwoo Lim , and H. Jin Kim . 2014. Real-time 6-DOF monocular visual SLAM in a large-scale environment . In IEEE Int. Conf. Robot. Autom. Hyon Lim, Jongwoo Lim, and H. Jin Kim. 2014. Real-time 6-DOF monocular visual SLAM in a large-scale environment. In IEEE Int. Conf. Robot. Autom."},{"key":"e_1_2_1_95_1","volume-title":"IEEE\/RSJ Int. Conf. Intell. Robot. Syst.","author":"Lin Kuen-Han","year":"2010","unstructured":"Kuen-Han Lin and Chieh-Chih Wang . 2010 . Stereo-based simultaneous localization, mapping and moving object tracking . In IEEE\/RSJ Int. Conf. Intell. Robot. Syst. Kuen-Han Lin and Chieh-Chih Wang. 2010. Stereo-based simultaneous localization, mapping and moving object tracking. In IEEE\/RSJ Int. Conf. Intell. Robot. Syst."},{"key":"e_1_2_1_96_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2014.6907299"},{"key":"e_1_2_1_97_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.88"},{"key":"e_1_2_1_98_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"e_1_2_1_99_1","doi-asserted-by":"publisher","DOI":"10.1023\/B:VISI.0000029664.99615.94"},{"key":"e_1_2_1_100_1","volume-title":"Lucas and Takeo Kanade","author":"Bruce","year":"1981","unstructured":"Bruce D. Lucas and Takeo Kanade . 1981 . An Iterative Image Registration Technique with an Application to Stereo Vision. In DARPA Image Underst. Work . 121--130. Bruce D. Lucas and Takeo Kanade. 1981. An Iterative Image Registration Technique with an Application to Stereo Vision. In DARPA Image Underst. Work. 121--130."},{"key":"e_1_2_1_101_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.438"},{"key":"e_1_2_1_102_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-010-0361-7"},{"key":"e_1_2_1_103_1","doi-asserted-by":"crossref","unstructured":"Iaroslav Melekhov Juha Ylioinas Juho Kannala and Esa Rahtu. 2017. Relative camera pose estimation using convolutional neural networks. In arXiv:1702.01381. Iaroslav Melekhov Juha Ylioinas Juho Kannala and Esa Rahtu. 2017. Relative camera pose estimation using convolutional neural networks. In arXiv:1702.01381.","DOI":"10.1007\/978-3-319-70353-4_57"},{"key":"e_1_2_1_104_1","volume-title":"Sorrenti","author":"Migliore Davide","year":"2009","unstructured":"Davide Migliore , Roberto Rigamonti , Daniele Marzorati , Matteo Matteucci , and Domenico G . Sorrenti . 2009 . Use a single camera for simultaneous localization and mapping with mobile object tracking in dynamic environments. In ICRA Work. Safe Navig. Open Dyn. Environ. Appl. to Auton. Veh . Davide Migliore, Roberto Rigamonti, Daniele Marzorati, Matteo Matteucci, and Domenico G. Sorrenti. 2009. Use a single camera for simultaneous localization and mapping with mobile object tracking in dynamic environments. In ICRA Work. Safe Navig. Open Dyn. Environ. Appl. to Auton. Veh."},{"key":"e_1_2_1_105_1","volume-title":"Vishnu Dutt Sharma, and Debashish Chakravarty","author":"Mohanty Vikram","year":"2016","unstructured":"Vikram Mohanty , Shubh Agrawal , Shaswat Datta , Arna Ghosh , Vishnu Dutt Sharma, and Debashish Chakravarty . 2016 . DeepVO: A deep learning approach for monocular visual odometry. In arXiv:1611.06069. Vikram Mohanty, Shubh Agrawal, Shaswat Datta, Arna Ghosh, Vishnu Dutt Sharma, and Debashish Chakravarty. 2016. DeepVO: A deep learning approach for monocular visual odometry. In arXiv:1611.06069."},{"key":"e_1_2_1_106_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.90.21.9795"},{"key":"e_1_2_1_107_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.403"},{"key":"e_1_2_1_108_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2006.810"},{"key":"e_1_2_1_109_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2006.236"},{"key":"e_1_2_1_110_1","doi-asserted-by":"publisher","DOI":"10.5244\/C.21.64"},{"key":"e_1_2_1_111_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2008.11.006"},{"key":"e_1_2_1_112_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2017.75"},{"key":"e_1_2_1_113_1","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2015.2463671"},{"key":"e_1_2_1_114_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-37447-0_12"},{"key":"e_1_2_1_115_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISMAR.2011.6092378"},{"key":"e_1_2_1_116_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2004.17"},{"key":"e_1_2_1_117_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2004.1315094"},{"key":"e_1_2_1_118_1","doi-asserted-by":"publisher","DOI":"10.1006\/cviu.2000.0869"},{"key":"e_1_2_1_119_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0263574700003143"},{"key":"e_1_2_1_120_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.1979.4310076"},{"key":"e_1_2_1_121_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2004.03.015"},{"key":"e_1_2_1_122_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2010.23"},{"key":"e_1_2_1_123_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206602"},{"key":"e_1_2_1_124_1","doi-asserted-by":"publisher","DOI":"10.5555\/1927006.1927020"},{"key":"e_1_2_1_125_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0804-2"},{"key":"e_1_2_1_126_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICSMC.2004.1400815"},{"key":"e_1_2_1_127_1","doi-asserted-by":"publisher","DOI":"10.1109\/MWC.2011.5751291"},{"key":"e_1_2_1_128_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2009.191"},{"key":"e_1_2_1_129_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.1984.1056936"},{"key":"e_1_2_1_130_1","doi-asserted-by":"publisher","DOI":"10.1007\/11744023_34"},{"key":"e_1_2_1_131_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126544"},{"key":"e_1_2_1_132_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2014.6906585"},{"key":"e_1_2_1_133_1","doi-asserted-by":"publisher","DOI":"10.1109\/TRO.2016.2552548"},{"key":"e_1_2_1_134_1","doi-asserted-by":"publisher","DOI":"10.1109\/UIC-ATC-ScalCom.2014.108"},{"key":"e_1_2_1_135_1","doi-asserted-by":"publisher","DOI":"10.1162\/153244304322972667"},{"key":"e_1_2_1_136_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-011-0441-3"},{"key":"e_1_2_1_137_1","doi-asserted-by":"publisher","DOI":"10.5555\/1703435.1703515"},{"key":"e_1_2_1_138_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2005.355"},{"key":"e_1_2_1_139_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2006.130"},{"key":"e_1_2_1_140_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-007-0111-7"},{"key":"e_1_2_1_141_1","doi-asserted-by":"publisher","DOI":"10.1007\/11744023_47"},{"key":"e_1_2_1_142_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.445"},{"key":"e_1_2_1_143_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176344136"},{"key":"e_1_2_1_144_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.1999.791238"},{"key":"e_1_2_1_145_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364910369268"},{"key":"e_1_2_1_146_1","unstructured":"Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional networks for action recognition in videos. In Adv. Neural Inf. Process. Syst. 1--9. Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional networks for action recognition in videos. In Adv. Neural Inf. Process. Syst. 1--9."},{"key":"e_1_2_1_147_1","doi-asserted-by":"publisher","DOI":"10.1145\/1179352.1141964"},{"key":"e_1_2_1_148_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-007-0107-3"},{"key":"e_1_2_1_150_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2012.02.009"},{"key":"e_1_2_1_151_1","doi-asserted-by":"publisher","DOI":"10.5555\/645310.649025"},{"key":"e_1_2_1_152_1","volume-title":"IEEE Int. Symp. Mix. Augment. Real.","author":"Tan Wei","year":"2013","unstructured":"Wei Tan , Haomin Liu , Zilong Dong , Guofeng Zhang , and Hujun Bao . 2013 . Robust monocular SLAM in dynamic environments . In IEEE Int. Symp. Mix. Augment. Real. Wei Tan, Haomin Liu, Zilong Dong, Guofeng Zhang, and Hujun Bao. 2013. Robust monocular SLAM in dynamic environments. In IEEE Int. Symp. Mix. Augment. Real."},{"key":"e_1_2_1_153_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2010.2042647"},{"key":"e_1_2_1_154_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF00129684"},{"key":"e_1_2_1_155_1","doi-asserted-by":"publisher","DOI":"10.1098\/rsta.1998.0224"},{"key":"e_1_2_1_156_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0262-8856(97)00010-3"},{"key":"e_1_2_1_157_1","volume-title":"Torr and Andrew Zisserman","author":"Philip H.","year":"1999","unstructured":"Philip H. S. Torr and Andrew Zisserman . 1999 . Feature based methods for structure and motion estimation. In Int. Work. Vis. Algorithms . Philip H. S. Torr and Andrew Zisserman. 1999. Feature based methods for structure and motion estimation. In Int. Work. Vis. Algorithms."},{"key":"e_1_2_1_158_1","doi-asserted-by":"publisher","DOI":"10.1006\/cviu.1999.0832"},{"key":"e_1_2_1_159_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2007.382974"},{"key":"e_1_2_1_160_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2017.11"},{"key":"e_1_2_1_161_1","doi-asserted-by":"crossref","unstructured":"Ren\u00e9 Vidal. 2006. Online clustering of moving hyperplanes. In Adv. Neural Inf. Process. Syst. 1433--1440. Ren\u00e9 Vidal. 2006. Online clustering of moving hyperplanes. In Adv. Neural Inf. Process. Syst. 1433--1440.","DOI":"10.7551\/mitpress\/7503.003.0184"},{"key":"e_1_2_1_162_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2010.939739"},{"key":"e_1_2_1_163_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.1179"},{"key":"e_1_2_1_164_1","doi-asserted-by":"publisher","DOI":"10.5555\/1965841.1965922"},{"key":"e_1_2_1_165_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2005.244"},{"key":"e_1_2_1_166_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-005-4839-7"},{"key":"e_1_2_1_167_1","unstructured":"Ren\u00e9 Vidal Stefano Soatto Yi Ma and Shankar Sastry. 2002. Segmentation of dynamic scenes from the multibody fundamental matrix. In ECCV Work. Vis. Model. Dyn. Scenes. Ren\u00e9 Vidal Stefano Soatto Yi Ma and Shankar Sastry. 2002. Segmentation of dynamic scenes from the multibody fundamental matrix. In ECCV Work. Vis. Model. Dyn. Scenes."},{"key":"e_1_2_1_168_1","unstructured":"Sudheendra Vijayanarasimhan Susanna Ricco Cordelia Schmid Rahul Sukthankar and Katerina Fragkiadaki. 2017. SfM-Net: Learning of structure and motion from video. In arXiv:1704.07804. Sudheendra Vijayanarasimhan Susanna Ricco Cordelia Schmid Rahul Sukthankar and Katerina Fragkiadaki. 2017. SfM-Net: Learning of structure and motion from video. In arXiv:1704.07804."},{"key":"e_1_2_1_169_1","volume-title":"IEEE Int. Conf. Robot. Autom.","volume":"3","author":"Wang Chieh-Chih","year":"2002","unstructured":"Chieh-Chih Wang and Chuck Thorpe . 2002 . Simultaneous localization and mapping with detection and tracking of moving objects . In IEEE Int. Conf. Robot. Autom. , Vol. 3 . 2918--2924. Chieh-Chih Wang and Chuck Thorpe. 2002. Simultaneous localization and mapping with detection and tracking of moving objects. In IEEE Int. Conf. Robot. Autom., Vol. 3. 2918--2924."},{"key":"e_1_2_1_170_1","doi-asserted-by":"publisher","DOI":"10.1177\/0278364907081229"},{"key":"e_1_2_1_171_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2017.7989236"},{"key":"e_1_2_1_172_1","doi-asserted-by":"publisher","DOI":"10.5772\/9700"},{"volume-title":"IEEE Int. Conf. Robot. Autom.","author":"Wangsiripitak Somkiat","key":"e_1_2_1_173_1","unstructured":"Somkiat Wangsiripitak and David W. Murray . 2009. Avoiding moving outliers in visual SLAM by tracking moving objects . In IEEE Int. Conf. Robot. Autom. Somkiat Wangsiripitak and David W. Murray. 2009. Avoiding moving outliers in visual SLAM by tracking moving objects. In IEEE Int. Conf. Robot. Autom."},{"key":"e_1_2_1_174_1","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2013.25"},{"key":"e_1_2_1_175_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2011.5995552"},{"key":"e_1_2_1_176_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-24673-2_46"},{"key":"e_1_2_1_177_1","doi-asserted-by":"publisher","DOI":"10.1007\/11744085_8"},{"key":"e_1_2_1_178_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.70739"},{"key":"e_1_2_1_179_1","volume-title":"Int. Conf. Mach. Learn. 2463--2472","author":"Yang Congyuan","year":"2015","unstructured":"Congyuan Yang , Daniel Robinson , and Rene Vidal . 2015 . Sparse subspace clustering with missing entries . In Int. Conf. Mach. Learn. 2463--2472 . Congyuan Yang, Daniel Robinson, and Rene Vidal. 2015. Sparse subspace clustering with missing entries. In Int. Conf. Mach. Learn. 2463--2472."},{"key":"e_1_2_1_180_1","unstructured":"Georges Younes Daniel Asmar and Elie Shammas. 2016. A survey on non-filter-based monocular visual SLAM systems. In arXiv:1607.00470. Georges Younes Daniel Asmar and Elie Shammas. 2016. A survey on non-filter-based monocular visual SLAM systems. In arXiv:1607.00470."},{"key":"e_1_2_1_181_1","doi-asserted-by":"publisher","DOI":"10.1007\/s40903-015-0032-7"},{"key":"e_1_2_1_182_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2012.09.004"},{"volume-title":"Human- and situation-aware people following","author":"Zender Hendrik","key":"e_1_2_1_183_1","unstructured":"Hendrik Zender , Patric Jensfelt , and Geert Jan M. Kruijff . 2007. Human- and situation-aware people following . In IEEE Int. Work. Robot Hum. Interact. Commun . 1131--1136. Hendrik Zender, Patric Jensfelt, and Geert Jan M. Kruijff. 2007. Human- and situation-aware people following. In IEEE Int. Work. Robot Hum. Interact. Commun. 1131--1136."},{"key":"e_1_2_1_184_1","first-page":"78","article-title":"Visual odometry in dynamical scenes","volume":"147","author":"Zhang Dong","year":"2012","unstructured":"Dong Zhang and Ping Li . 2012 . Visual odometry in dynamical scenes . Sensors Transducers J. 147 , 12 (2012), 78 -- 86 . Dong Zhang and Ping Li. 2012. Visual odometry in dynamical scenes. Sensors Transducers J. 147, 12 (2012), 78--86.","journal-title":"Sensors Transducers J."},{"key":"e_1_2_1_185_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2009.5457695"},{"key":"e_1_2_1_186_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10584-0_39"},{"volume-title":"IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.","author":"Zhou Tinghui","key":"e_1_2_1_187_1","unstructured":"Tinghui Zhou , Matthew Brown , Noah Snavely , and David G. Lowe . 2017. Unsupervised learning of depth and ego-motion from video . In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. 2017. Unsupervised learning of depth and ego-motion from video. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit."}],"container-title":["ACM Computing Surveys"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3177853","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T05:25:42Z","timestamp":1693545942000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3177853"}},"subtitle":["A Survey"],"short-title":[],"issued":{"date-parts":[[2018,2,20]]},"references-count":186,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2019,3,31]]}},"alternative-id":["10.1145\/3177853"],"URL":"https:\/\/doi.org\/10.1145\/3177853","relation":{},"ISSN":["0360-0300","1557-7341"],"issn-type":[{"type":"print","value":"0360-0300"},{"type":"electronic","value":"1557-7341"}],"subject":[],"published":{"date-parts":[[2018,2,20]]},"assertion":[{"value":"2017-08-01","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2017-12-01","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-02-20","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}