{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T04:34:17Z","timestamp":1726202057920},"reference-count":59,"publisher":"Association for Computing Machinery (ACM)","issue":"6","license":[{"start":{"date-parts":[[2017,11,20]],"date-time":"2017-11-20T00:00:00Z","timestamp":1511136000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Graph."],"published-print":{"date-parts":[[2017,12,31]]},"abstract":"We present a technique for efficiently synthesizing images of atmospheric clouds using a combination of Monte Carlo integration and neural networks. The intricacies of Lorenz-Mie scattering and the high albedo of cloud-forming aerosols make rendering of clouds---e.g. the characteristic silverlining and the \"whiteness\" of the inner body---challenging for methods based solely on Monte Carlo integration or diffusion theory. We approach the problem differently. Instead of simulating all light transport during rendering, we pre-learn the spatial and directional distribution of radiant flux from tens of cloud exemplars. To render a new scene, we sample visible points of the cloud and, for each, extract a hierarchical 3D descriptor of the cloud geometry with respect to the shading location and the light source. The descriptor is input to a deep neural network that predicts the radiance function for each shading configuration. We make the key observation that progressively feeding the hierarchical descriptor into the network enhances the network's ability to learn faster and predict with higher accuracy while using fewer coefficients. We also employ a block design with residual connections to further improve performance. A GPU implementation of our method synthesizes images of clouds that are nearly indistinguishable from the reference solution within seconds to minutes. Our method thus represents a viable solution for applications such as cloud design and, thanks to its temporal stability, for high-quality production of animated content.<\/jats:p>","DOI":"10.1145\/3130800.3130880","type":"journal-article","created":{"date-parts":[[2017,11,22]],"date-time":"2017-11-22T16:25:08Z","timestamp":1511367908000},"page":"1-11","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":61,"title":["Deep scattering"],"prefix":"10.1145","volume":"36","author":[{"given":"Simon","family":"Kallweit","sequence":"first","affiliation":[{"name":"Disney Research and ETH Z\u00fcrich"}]},{"given":"Thomas","family":"M\u00fcller","sequence":"additional","affiliation":[{"name":"Disney Research and ETH Z\u00fcrich"}]},{"given":"Brian","family":"Mcwilliams","sequence":"additional","affiliation":[{"name":"Disney Research"}]},{"given":"Markus","family":"Gross","sequence":"additional","affiliation":[{"name":"Disney Research and ETH Z\u00fcrich"}]},{"given":"Jan","family":"Nov\u00e1k","sequence":"additional","affiliation":[{"name":"Disney Research"}]}],"member":"320","published-online":{"date-parts":[[2017,11,20]]},"reference":[{"key":"e_1_2_2_1_1","unstructured":"Mart\u00edn Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean etal 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http:\/\/tensorflow.org\/ Software available from tensorflow.org. Mart\u00edn Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http:\/\/tensorflow.org\/ Software available from tensorflow.org."},{"key":"e_1_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073708"},{"key":"e_1_2_2_3_1","volume-title":"Proceedings of The 34th International Conference on Machine Learning.","author":"Balduzzi David","year":"2017","unstructured":"David Balduzzi , Marcus Frean , Lennox Leary , JP Lewis , Kurt Wan-Duo Ma , and Brian McWilliams . 2017 . The Shattered Gradients Problem: If resnets are the answer, then what is the question? . In Proceedings of The 34th International Conference on Machine Learning. David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. 2017. The Shattered Gradients Problem: If resnets are the answer, then what is the question?. In Proceedings of The 34th International Conference on Machine Learning."},{"key":"e_1_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.50"},{"key":"e_1_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073698"},{"key":"e_1_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/1342250.1342277"},{"key":"e_1_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073601"},{"key":"e_1_2_2_8_1","volume-title":"Radiative transfer","author":"Chandrasekhar Subrahmanyan","unstructured":"Subrahmanyan Chandrasekhar . 1960. Radiative transfer . Dover Publications . Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Dover Publications."},{"key":"e_1_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073643"},{"key":"e_1_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/2010324.1964951"},{"key":"e_1_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/344779.344795"},{"key":"e_1_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/1073204.1073308"},{"key":"e_1_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cag.2014.08.003"},{"key":"e_1_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cag.2012.10.002"},{"key":"e_1_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/1276377.1276452"},{"key":"e_1_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2682629"},{"key":"e_1_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/325334.325248"},{"key":"e_1_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/2508363.2508411"},{"key":"e_1_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-8659.00500"},{"key":"e_1_2_2_20_1","volume-title":"Deep Residual Learning for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).","author":"He Kaiming","year":"2016","unstructured":"Kaiming He , Xiangyu Zhang , Shaoqing Ren , and Jian Sun . 2016 . Deep Residual Learning for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)."},{"key":"e_1_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/1330511.1330518"},{"key":"e_1_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.1145\/1899404.1899409"},{"key":"e_1_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/1401132.1401137"},{"key":"e_1_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/280814.280925"},{"key":"e_1_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/383259.383319"},{"key":"e_1_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/800031.808594"},{"key":"e_1_2_2_27_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","author":"Kingma Diederik","year":"2014","unstructured":"Diederik Kingma and Jimmy Ba . 2014 . Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"key":"e_1_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12342"},{"key":"e_1_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2012.03148.x"},{"key":"e_1_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073665"},{"key":"e_1_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/2601097.2601219"},{"key":"e_1_2_2_32_1","volume-title":"Proc. of Eurographics Workshop on Rendering Techniques. Springer-Verlag","author":"Eric","unstructured":"Eric P. Lafortune and Yves D. Willems. 1996. Rendering participating media with bidirectional path tracing . In Proc. of Eurographics Workshop on Rendering Techniques. Springer-Verlag , London, UK, 91--100. Eric P. Lafortune and Yves D. Willems. 1996. Rendering participating media with bidirectional path tracing. In Proc. of Eurographics Workshop on Rendering Techniques. Springer-Verlag, London, UK, 91--100."},{"key":"e_1_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"e_1_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.5555\/2386501.2386505"},{"key":"e_1_2_2_35_1","unstructured":"Ludwig Lorenz. 1890. Lysbev\u00e6gelsen i og uden for en af plane Lysb\u00f8lger belyst Kugle. In Det Kongelige Danske Videnskabernes Selskabs Skrifter (trykt utg.): Naturvidenskabelig og Mathematisk Afdeling. Ludwig Lorenz. 1890. Lysbev\u00e6gelsen i og uden for en af plane Lysb\u00f8lger belyst Kugle. In Det Kongelige Danske Videnskabernes Selskabs Skrifter (trykt utg.): Naturvidenskabelig og Mathematisk Afdeling."},{"key":"e_1_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.1002\/andp.19083300302"},{"key":"e_1_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.2312\/EGWR\/EGSR07\/231-242"},{"key":"e_1_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/2980179.2982429"},{"key":"e_1_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.13225"},{"key":"e_1_2_2_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/237170.237277"},{"key":"e_1_2_2_41_1","doi-asserted-by":"publisher","DOI":"10.1145\/2185520.2185556"},{"key":"e_1_2_2_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/2661229.2661292"},{"key":"e_1_2_2_43_1","volume-title":"Wavenet: A Generative Model for Raw Audio. arXiv preprint arXiv:1609.03499","author":"van den Oord Aaron","year":"2016","unstructured":"Aaron van den Oord , Sander Dieleman , Heiga Zen , Karen Simonyan , Oriol Vinyals , Alex Graves , Nal Kalchbrenner , Andrew Senior , and Koray Kavukcuoglu . 2016 a. Wavenet: A Generative Model for Raw Audio. arXiv preprint arXiv:1609.03499 (2016). Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016a. Wavenet: A Generative Model for Raw Audio. arXiv preprint arXiv:1609.03499 (2016)."},{"key":"e_1_2_2_44_1","volume-title":"Proceedings of The 33rd International Conference on Machine Learning. 1747--1756","author":"den Oord Aaron Van","year":"2016","unstructured":"Aaron Van den Oord , Nal Kalchbrenner , and Koray Kavukcuoglu . 2016 b. Pixel Recurrent Neural Networks . In Proceedings of The 33rd International Conference on Machine Learning. 1747--1756 . Aaron Van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016b. Pixel Recurrent Neural Networks. In Proceedings of The 33rd International Conference on Machine Learning. 1747--1756."},{"key":"e_1_2_2_45_1","doi-asserted-by":"publisher","DOI":"10.5555\/647652.732117"},{"key":"e_1_2_2_46_1","volume-title":"Monte Carlo and Quasi-Monte Carlo Methods","author":"Raab Matthias","year":"2006","unstructured":"Matthias Raab , Daniel Seibert , and Alexander Keller . 2008. Unbiased global illumination with participating media . In Monte Carlo and Quasi-Monte Carlo Methods 2006 . Springer , 591--606. Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 591--606."},{"key":"e_1_2_2_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2462009"},{"key":"e_1_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.5555\/2383533.2383584"},{"key":"e_1_2_2_49_1","volume-title":"Progressive Neural Networks. CoRR abs\/1606.04671","author":"Rusu Andrei A.","year":"2016","unstructured":"Andrei A. Rusu , Neil C. Rabinowitz , Guillaume Desjardins , Hubert Soyer , James Kirkpatrick , Koray Kavukcuoglu , Razvan Pascanu , and Raia Hadsell . 2016. Progressive Neural Networks. CoRR abs\/1606.04671 ( 2016 ). http:\/\/arxiv.org\/abs\/1606.04671 Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Progressive Neural Networks. CoRR abs\/1606.04671 (2016). http:\/\/arxiv.org\/abs\/1606.04671"},{"key":"e_1_2_2_50_1","volume-title":"Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556","author":"Simonyan Karen","year":"2014","unstructured":"Karen Simonyan and Andrew Zisserman . 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 ( 2014 ). Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014)."},{"key":"e_1_2_2_51_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7091-9430-0_5"},{"key":"e_1_2_2_52_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.13102"},{"key":"e_1_2_2_53_1","doi-asserted-by":"publisher","DOI":"10.5555\/2383654.2383693"},{"key":"e_1_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2010.01831.x"},{"key":"e_1_2_2_55_1","doi-asserted-by":"publisher","DOI":"10.1175\/1520-0469(1953)010<0204:PPOCC>2.0.CO;2"},{"key":"e_1_2_2_56_1","unstructured":"E. R. Woodcock T. Murphy P. J. Hemmings and T. C. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems. Argonne National Laboratory. E. R. Woodcock T. Murphy P. J. Hemmings and T. C. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems. Argonne National Laboratory."},{"key":"e_1_2_2_57_1","unstructured":"Yonghui Wu Mike Schuster Zhifeng Chen Quoc V Le Mohammad Norouzi Wolfgang Macherey Maxim Krikun Yuan Cao Qin Gao Klaus Macherey etal 2016. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016). Yonghui Wu Mike Schuster Zhifeng Chen Quoc V Le Mohammad Norouzi Wolfgang Macherey Maxim Krikun Yuan Cao Qin Gao Klaus Macherey et al. 2016. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016)."},{"key":"e_1_2_2_58_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2011.02049.x"},{"key":"e_1_2_2_59_1","doi-asserted-by":"publisher","DOI":"10.1145\/1882261.1866199"}],"container-title":["ACM Transactions on Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3130800.3130880","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,31]],"date-time":"2022-12-31T22:20:12Z","timestamp":1672525212000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3130800.3130880"}},"subtitle":["rendering atmospheric clouds with radiance-predicting neural networks"],"short-title":[],"issued":{"date-parts":[[2017,11,20]]},"references-count":59,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2017,12,31]]}},"alternative-id":["10.1145\/3130800.3130880"],"URL":"https:\/\/doi.org\/10.1145\/3130800.3130880","relation":{},"ISSN":["0730-0301","1557-7368"],"issn-type":[{"value":"0730-0301","type":"print"},{"value":"1557-7368","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,11,20]]},"assertion":[{"value":"2017-11-20","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}