{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:06:38Z","timestamp":1730318798525,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":45,"publisher":"ACM","license":[{"start":{"date-parts":[[2018,3,13]],"date-time":"2018-03-13T00:00:00Z","timestamp":1520899200000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DRL- 1417997"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017,3,13]]},"DOI":"10.1145\/3027385.3027399","type":"proceedings-article","created":{"date-parts":[[2017,2,27]],"date-time":"2017-02-27T13:10:59Z","timestamp":1488201059000},"page":"339-347","source":"Crossref","is-referenced-by-count":17,"title":["Predicting math performance using natural language processing tools"],"prefix":"10.1145","author":[{"given":"Scott","family":"Crossley","sequence":"first","affiliation":[{"name":"Georgia State University"}]},{"given":"Ran","family":"Liu","sequence":"additional","affiliation":[{"name":"Carnegie Mellon University"}]},{"given":"Danielle","family":"McNamara","sequence":"additional","affiliation":[{"name":"Arizona State University"}]}],"member":"320","published-online":{"date-parts":[[2017,3,13]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.lindif.2012.10.007"},{"issue":"8","key":"e_1_3_2_1_2_1","first-page":"786","article-title":"Reading math: More than words can say","volume":"56","author":"Adams T. L.","year":"2003","journal-title":"The Reading Teacher"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"crossref","unstructured":"LeFevre J. A. Fast L. Skwarchuk S. L. Smith-Chant B. L. Bisanz J. Kamawar D. & Penner-Wilger M. (2010). Pathways to math: Longitudinal predictors of performance. Child development 81(6) 1753--1767. LeFevre J. A. Fast L. Skwarchuk S. L. Smith-Chant B. L. Bisanz J. Kamawar D. & Penner-Wilger M. (2010). Pathways to math: Longitudinal predictors of performance. Child development 81 (6) 1753--1767.","DOI":"10.1111\/j.1467-8624.2010.01508.x"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.3102\/00346543049002222"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.2307\/749709"},{"key":"e_1_3_2_1_6_1","unstructured":"Alt M. Arizmendi G. D. & Beal C. R. (2014). The relationship between math and language: Academic implications for children with specific language impairment and English language learners. Language speech and hearing services in schools 45(3) 220--233. Alt M. Arizmendi G. D. & Beal C. R. (2014). The relationship between math and language: Academic implications for children with specific language impairment and English language learners. Language speech and hearing services in schools 45 (3) 220--233."},{"key":"e_1_3_2_1_7_1","unstructured":"Hampden-Thompson G. Mulligan G. Kinukawa A. & Halle T. (2008). Math Achievement of Language-Minority Students During the Elementary Years. Washington DC: U.S. Department of Education National Center for Education Statistics. Hampden-Thompson G. Mulligan G. Kinukawa A. & Halle T. (2008). Math Achievement of Language-Minority Students During the Elementary Years. Washington DC: U.S. Department of Education National Center for Education Statistics."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Martiniello M. (2009). Linguistic complexity schematic representations and differential item functioning for English language learners in math tests. Educational assessment 14(3--4) 160--179. Martiniello M. (2009). Linguistic complexity schematic representations and differential item functioning for English language learners in math tests. Educational assessment 14 (3--4) 160--179.","DOI":"10.1080\/10627190903422906"},{"key":"e_1_3_2_1_9_1","unstructured":"Hernandez F. (2013). The Relationship Between Reading and Math Achievement of Middle School Students as Measured by the Texas Assessment of Knowledge and Skills (Doctoral dissertation). Hernandez F. (2013). The Relationship Between Reading and Math Achievement of Middle School Students as Measured by the Texas Assessment of Knowledge and Skills (Doctoral dissertation)."},{"key":"e_1_3_2_1_10_1","unstructured":"Hampden-Thompson G. Mulligan G. Kinukawa A. & Halle T. (2008). Math Achievement of Language-Minority Students During the Elementary Years. Washington DC: U.S. Department of Education National Center for Education Statistics. Hampden-Thompson G. Mulligan G. Kinukawa A. & Halle T. (2008). Math Achievement of Language-Minority Students During the Elementary Years. Washington DC: U.S. Department of Education National Center for Education Statistics."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-9922.2011.00652.x"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1080\/10665684.2013.780647"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1080\/00220679909597634"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.5555\/1734243.1734245"},{"volume-title":"Lane, H. C., Yacef, K., Mostow, J., & Pavlik, P. (Eds.). Proceedings of the Artificial Intelligence in Education (AIED) Conference.","author":"Olsen J. K.","key":"e_1_3_2_1_15_1"},{"volume-title":"Proceedings of the Artificial Intelligence in Education (AIED) Conference. (pp. 441--448)","year":"2009","author":"Rau M. A.","key":"e_1_3_2_1_16_1"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-30950-2_23"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1002\/tesq.194"},{"key":"e_1_3_2_1_19_1","unstructured":"Crossley S. A. Kyle K. & McNamara D. S. (in press). The tool for the automatic analysis of text cohesion (TAACO): Automatic assessment of local global and text cohesion. Behavior Research Methods. Crossley S. A. Kyle K. & McNamara D. S. (in press). The tool for the automatic analysis of text cohesion (TAACO): Automatic assessment of local global and text cohesion. Behavior Research Methods."},{"volume-title":"Behavior Research Methods. (Thorndike & Lorge","year":"1944","author":"Crossley S. A.","key":"e_1_3_2_1_20_1"},{"key":"e_1_3_2_1_21_1","unstructured":"Thorndike E. L. & Lorge I. (1944). The teacher's wordbook of 30 000 words. New York: Columbia University Teachers College: Bureau of Publications. Thorndike E. L. & Lorge I. (1944). The teacher's wordbook of 30 000 words. New York: Columbia University Teachers College: Bureau of Publications."},{"key":"e_1_3_2_1_22_1","unstructured":"Ku\u010dera H. & Francis N. (1967). Computational analysis of present-day American English. Providence RI: Brown University Press. Ku\u010dera H. & Francis N. (1967). Computational analysis of present-day American English. Providence RI: Brown University Press."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.3758\/BF03200836"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.3758\/BRM.41.4.977"},{"key":"e_1_3_2_1_25_1","unstructured":"The British National Corpus version 3 (BNC XML Edition). 2007. Distributed by Oxford University Computing Services on behalf of the BNC Consortium. URL: http:\/\/www.natcorp.ox.ac.uk\/ The British National Corpus version 3 (BNC XML Edition). 2007. Distributed by Oxford University Computing Services on behalf of the BNC Consortium. URL: http:\/\/www.natcorp.ox.ac.uk\/"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.2307\/3587951"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1093\/applin\/amp058"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.3758\/s13428-013-0403-5"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1080\/14640748108400805"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.3758\/s13428-012-0210-4"},{"key":"e_1_3_2_1_31_1","unstructured":"Bird S. Klein E. & Loper E. (2009). Natural language processing with Python. O'Reilly Media Inc. Bird S. Klein E. & Loper E. (2009). Natural language processing with Python. O'Reilly Media Inc."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/219717.219748"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"crossref","unstructured":"Cambria E. Grassi M. Hussain A. & Havasi C. (2012). Sentic computing for social media marketing. Multimedia tools and applications 59(2) 557--577. 10.1007\/s11042-011-0815-0 Cambria E. Grassi M. Hussain A. & Havasi C. (2012). Sentic computing for social media marketing. Multimedia tools and applications 59 (2) 557--577. 10.1007\/s11042-011-0815-0","DOI":"10.1007\/s11042-011-0815-0"},{"key":"e_1_3_2_1_34_1","unstructured":"Cambria E. Speer R. Havasi C. & Hussain A. (2010). SenticNet: A Publicly Available Semantic Resource for Opinion Mining. Paper presented at the AAAI fall symposium: commonsense knowledge. Cambria E. Speer R. Havasi C. & Hussain A. (2010). SenticNet: A Publicly Available Semantic Resource for Opinion Mining. Paper presented at the AAAI fall symposium: commonsense knowledge."},{"key":"e_1_3_2_1_35_1","unstructured":"Mohammad S. M. & Turney P. D. (2010). Emotions evoked by common words and phrases: Using Mechanical Turk to create an emotion lexicon. Paper presented at the Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text. Mohammad S. M. & Turney P. D. (2010). Emotions evoked by common words and phrases: Using Mechanical Turk to create an emotion lexicon. Paper presented at the Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8640.2012.00460.x"},{"key":"e_1_3_2_1_37_1","unstructured":"Lasswell H. D. & Namenwirth J. Z. (1969). The Lasswell Value Dictionary. New Haven: Yale University Press. Lasswell H. D. & Namenwirth J. Z. (1969). The Lasswell Value Dictionary. New Haven: Yale University Press."},{"key":"e_1_3_2_1_38_1","unstructured":"Scherer K. R. (2005). What are emotions? And how can they be measured? Social science information 44(4) 695--729 Scherer K. R. (2005). What are emotions? And how can they be measured? Social science information 44 (4) 695--729"},{"first-page":"1","volume-title":"J. G. Shanahan, Y. Qu, & J","year":"2006","author":"Polanyi L.","key":"e_1_3_2_1_39_1"},{"volume-title":"AAAI Conf. on Weblogs and Social Media","year":"2014","author":"Hutto C. J.","key":"e_1_3_2_1_40_1"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"crossref","unstructured":"Toutanova K. Klein D. Manning C. D. & Singer Y. (2003). Feature-rich part-of-speech tagging with a cyclic dependency network. Paper presented at the Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1. 10.3115\/1073445.1073478 Toutanova K. Klein D. Manning C. D. & Singer Y. (2003). Feature-rich part-of-speech tagging with a cyclic dependency network. Paper presented at the Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1. 10.3115\/1073445.1073478","DOI":"10.3115\/1073445.1073478"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"crossref","unstructured":"Manning C. D. Surdeanu M. Bauer J. Finkel J. Bethard S. J. & McClosky D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. Paper presented at the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations Baltimore MA. Manning C. D. Surdeanu M. Bauer J. Finkel J. Bethard S. J. & McClosky D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. Paper presented at the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations Baltimore MA.","DOI":"10.3115\/v1\/P14-5010"},{"key":"e_1_3_2_1_43_1","unstructured":"R Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. 2013: ISBN 3-900051-07-0. R Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. 2013: ISBN 3-900051-07-0."},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"crossref","unstructured":"Bates D. M\u00e4chler M. Bolker B. & Walker S. (2015). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823. Bates D. M\u00e4chler M. Bolker B. & Walker S. (2015). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.","DOI":"10.18637\/jss.v067.i01"},{"key":"e_1_3_2_1_45_1","unstructured":"Kuznetsova A. Brockhoff P. B. & Christensen R. H. B. (2015). Package 'lmerTest'. R package version 2.0-29. Kuznetsova A. Brockhoff P. B. & Christensen R. H. B. (2015). Package 'lmerTest'. R package version 2.0-29."}],"event":{"name":"LAK '17: 7th International Learning Analytics and Knowledge Conference","acronym":"LAK '17","location":"Vancouver British Columbia Canada"},"container-title":["Proceedings of the Seventh International Learning Analytics & Knowledge Conference"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3027385.3027399","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3027385.3027399","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,18]],"date-time":"2020-11-18T11:42:55Z","timestamp":1605699775000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3027385.3027399"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3,13]]},"references-count":45,"alternative-id":["10.1145\/3027385.3027399","10.1145\/3027385"],"URL":"https:\/\/doi.org\/10.1145\/3027385.3027399","relation":{},"subject":[],"published":{"date-parts":[[2017,3,13]]}}}