{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:06:30Z","timestamp":1730318790575,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":24,"publisher":"ACM","license":[{"start":{"date-parts":[[2016,12,18]],"date-time":"2016-12-18T00:00:00Z","timestamp":1482019200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"Ministry of Communication and IT, Govt. of India","award":["1(7)\/2014-ME&HI"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2016,12,18]]},"DOI":"10.1145\/3009977.3010050","type":"proceedings-article","created":{"date-parts":[[2016,12,22]],"date-time":"2016-12-22T16:20:29Z","timestamp":1482423629000},"page":"1-6","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":29,"title":["Classification of Schizophrenia versus normal subjects using deep learning"],"prefix":"10.1145","author":[{"given":"Pinkal","family":"Patel","sequence":"first","affiliation":[{"name":"Indraprastha Institute of Information Technology, Delhi (IIIT-D), India"}]},{"given":"Priya","family":"Aggarwal","sequence":"additional","affiliation":[{"name":"Indraprastha Institute of Information Technology, Delhi, (IIIT-D), India"}]},{"given":"Anubha","family":"Gupta","sequence":"additional","affiliation":[{"name":"Indraprastha Institute of Information Technology, Delhi, (IIIT-D), India"}]}],"member":"320","published-online":{"date-parts":[[2016,12,18]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial","author":"Anderson A.","year":"2013","unstructured":"A. Anderson and M. S. Cohen . Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial , 2013 . A. Anderson and M. S. Cohen. Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial, 2013."},{"key":"e_1_3_2_1_2_1","volume-title":"unsupervised learning, and deep architectures. ICML unsupervised and transfer learning, 27(37--50):1","author":"Baldi P.","year":"2012","unstructured":"P. Baldi . Autoencoders , unsupervised learning, and deep architectures. ICML unsupervised and transfer learning, 27(37--50):1 , 2012 . P. Baldi. Autoencoders, unsupervised learning, and deep architectures. ICML unsupervised and transfer learning, 27(37--50):1, 2012."},{"key":"e_1_3_2_1_3_1","volume-title":"Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4):537--541","author":"Biswal B.","year":"1995","unstructured":"B. Biswal , F. Zerrin Yetkin , V. M. Haughton , and J. S. Hyde . Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4):537--541 , 1995 . B. Biswal, F. Zerrin Yetkin, V. M. Haughton, and J. S. Hyde. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4):537--541, 1995."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.schres.2015.08.011"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2015.04.002"},{"issue":"9","key":"e_1_3_2_1_6_1","first-page":"1636","article-title":"Mapping functionally related regions of brain with functional connectivity MR imaging","volume":"21","author":"Cordes D.","year":"2000","unstructured":"D. Cordes , V. M. Haughton , K. Arfanakis , G. J. Wendt , P. A. Turski , C. H. Moritz , M. A. Quigley , and M. E. Meyerand . Mapping functionally related regions of brain with functional connectivity MR imaging . American Journal of Neuroradiology , 21 ( 9 ): 1636 -- 1644 , 2000 . D. Cordes, V. M. Haughton, K. Arfanakis, G. J. Wendt, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand. Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology, 21(9):1636--1644, 2000.","journal-title":"American Journal of Neuroradiology"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1022627411411"},{"key":"e_1_3_2_1_8_1","volume-title":"Clinical applications of resting state functional connectivity. Frontiers in systems neuroscience, 4:19","author":"Fox M. D.","year":"2010","unstructured":"M. D. Fox and M. Greicius . Clinical applications of resting state functional connectivity. Frontiers in systems neuroscience, 4:19 , 2010 . M. D. Fox and M. Greicius. Clinical applications of resting state functional connectivity. Frontiers in systems neuroscience, 4:19, 2010."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-02913-9_52"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2009.12.120"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0039731"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2015.05.018"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-09330-7_27"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.07.019"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/PRNI.2013.28"},{"key":"e_1_3_2_1_16_1","volume-title":"Dynamic functional connectomics signatures for characterization and differentiation of ptsd patients. Human brain mapping, 35(4):1761--1778","author":"Li X.","year":"2014","unstructured":"X. Li , D. Zhu , X. Jiang , C. Jin , X. Zhang , L. Guo , J. Zhang , X. Hu , L. Li , and T. Liu . Dynamic functional connectomics signatures for characterization and differentiation of ptsd patients. Human brain mapping, 35(4):1761--1778 , 2014 . X. Li, D. Zhu, X. Jiang, C. Jin, X. Zhang, L. Guo, J. Zhang, X. Hu, L. Li, and T. Liu. Dynamic functional connectomics signatures for characterization and differentiation of ptsd patients. Human brain mapping, 35(4):1761--1778, 2014."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.5555\/2041580.2041600"},{"key":"e_1_3_2_1_18_1","volume-title":"The center for biomedical research excellence (cobre)","author":"T. M. R. Network and the University of New Mexico.","year":"2012","unstructured":"T. M. R. Network and the University of New Mexico. The center for biomedical research excellence (cobre) , 2012 . T. M. R. Network and the University of New Mexico. The center for biomedical research excellence (cobre), 2012."},{"key":"e_1_3_2_1_19_1","volume-title":"Sparse autoencoder. CS294A Lecture notes, 72:1--19","author":"Ng A.","year":"2011","unstructured":"A. Ng . Sparse autoencoder. CS294A Lecture notes, 72:1--19 , 2011 . A. Ng. Sparse autoencoder. CS294A Lecture notes, 72:1--19, 2011."},{"key":"e_1_3_2_1_20_1","volume-title":"A method for evaluating dynamic functional network connectivity and task-modulation: application to Schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5--6):351--366","author":"Pearlson G. D.","year":"2010","unstructured":"\u00dc. Sako\u011flu, G. D. Pearlson , K. A. Kiehl , Y. M. Wang , A. M. Michael , and V. D. Calhoun . A method for evaluating dynamic functional network connectivity and task-modulation: application to Schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5--6):351--366 , 2010 . \u00dc. Sako\u011flu, G. D. Pearlson, K. A. Kiehl, Y. M. Wang, A. M. Michael, and V. D. Calhoun. A method for evaluating dynamic functional network connectivity and task-modulation: application to Schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5--6):351--366, 2010."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.01.079"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.3389\/fnhum.2013.00802"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24553-9_70"},{"key":"e_1_3_2_1_24_1","volume-title":"The nature of statistical learning theory","author":"Vapnik V.","year":"2013","unstructured":"V. Vapnik . The nature of statistical learning theory . Springer Science & Business Media , 2013 . V. Vapnik. The nature of statistical learning theory. Springer Science & Business Media, 2013."}],"event":{"name":"ICVGIP '16: Indian Conference on Computer Vision, Graphics and Image Processing","sponsor":["Google Inc.","QI Qualcomm Inc.","Tata Consultancy Services","NVIDIA","MathWorks The MathWorks, Inc.","Microsoft Research Microsoft Research"],"location":"Guwahati Assam India","acronym":"ICVGIP '16"},"container-title":["Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3009977.3010050","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,14]],"date-time":"2023-01-14T09:09:52Z","timestamp":1673687392000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3009977.3010050"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,12,18]]},"references-count":24,"alternative-id":["10.1145\/3009977.3010050","10.1145\/3009977"],"URL":"https:\/\/doi.org\/10.1145\/3009977.3010050","relation":{},"subject":[],"published":{"date-parts":[[2016,12,18]]},"assertion":[{"value":"2016-12-18","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}