{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,5]],"date-time":"2025-05-05T04:24:08Z","timestamp":1746419048582,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":44,"publisher":"ACM","license":[{"start":{"date-parts":[[2016,8,13]],"date-time":"2016-08-13T00:00:00Z","timestamp":1471046400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2016,8,13]]},"DOI":"10.1145\/2939672.2939716","type":"proceedings-article","created":{"date-parts":[[2016,8,8]],"date-time":"2016-08-08T18:33:46Z","timestamp":1470681226000},"page":"451-460","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":51,"title":["Domain Adaptation in the Absence of Source Domain Data"],"prefix":"10.1145","author":[{"given":"Boris","family":"Chidlovskii","sequence":"first","affiliation":[{"name":"Xerox Research Centre Europe, Meylan, France"}]},{"given":"Stephane","family":"Clinchant","sequence":"additional","affiliation":[{"name":"Xerox Research Centre Europe, Meylan, France"}]},{"given":"Gabriela","family":"Csurka","sequence":"additional","affiliation":[{"name":"Xerox Research Centre Europe, Meylan, France"}]}],"member":"320","published-online":{"date-parts":[[2016,8,13]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/342009.335438"},{"key":"e_1_3_2_1_2_1","first-page":"137","volume-title":"Proc. of NIPS, (Curran Associates)","author":"Ben-David S.","year":"2007","unstructured":"S. Ben-David , J. Blitzer , K. Crammer , and F. Pereira . Analysis of representations for domain adaptation . In Proc. of NIPS, (Curran Associates) , pages 137 -- 144 , 2007 . S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adaptation. In Proc. of NIPS, (Curran Associates), pages 137--144, 2007."},{"key":"e_1_3_2_1_3_1","first-page":"173","volume-title":"Proc. of AISTATS","author":"Blitzer J.","year":"2011","unstructured":"J. Blitzer , S. Kakade , and D. P. Foster . Domain adaptation with coupled subspaces . In Proc. of AISTATS , pages 173 -- 181 , 2011 . J. Blitzer, S. Kakade, and D. P. Foster. Domain adaptation with coupled subspaces. In Proc. of AISTATS, pages 173--181, 2011."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.5555\/1610075.1610094"},{"key":"e_1_3_2_1_5_1","first-page":"289","volume-title":"Proc. of NIPS, (Curran Associates)","author":"Chaudhuri K.","year":"2008","unstructured":"K. Chaudhuri and C. Monteleoni . Privacy-preserving logistic regression . In Proc. of NIPS, (Curran Associates) , pages 289 -- 296 , 2008 . K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In Proc. of NIPS, (Curran Associates), pages 289--296, 2008."},{"key":"e_1_3_2_1_6_1","first-page":"2456","volume-title":"Proc. of NIPS, (Curran Associates)","author":"Chen M.","year":"2011","unstructured":"M. Chen , K. Q. Weinberger , and J. Blitzer . Co-training for domain adaptation . In Proc. of NIPS, (Curran Associates) , pages 2456 -- 2464 , 2011 . M. Chen, K. Q. Weinberger, and J. Blitzer. Co-training for domain adaptation. In Proc. of NIPS, (Curran Associates), pages 2456--2464, 2011."},{"key":"e_1_3_2_1_7_1","first-page":"767","volume-title":"Proc. of ICML","author":"Chen M.","year":"2012","unstructured":"M. Chen , Z. Xu , K. Q. Weinberger , and F. Sha . Marginalized denoising autoencoders for domain adaptation . In Proc. of ICML , pages 767 -- 774 , 2012 . M. Chen, Z. Xu, K. Q. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adaptation. In Proc. of ICML, pages 767--774, 2012."},{"key":"e_1_3_2_1_8_1","first-page":"1752","volume-title":"Proc. of AAAI","author":"Chen N.","year":"2014","unstructured":"N. Chen , J. Zhu , J. Chen , and B. Zhang . Dropout training for support vector machines . In Proc. of AAAI , pages 1752 -- 1759 , 2014 . N. Chen, J. Zhu, J. Chen, and B. Zhang. Dropout training for support vector machines. In Proc. of AAAI, pages 1752--1759, 2014."},{"key":"e_1_3_2_1_9_1","first-page":"703","volume-title":"Proc. of ICML","author":"Chen Z.","year":"2014","unstructured":"Z. Chen and B. Liu . Topic modeling using topics from many domains, lifelong learning and big data . In Proc. of ICML , pages 703 -- 711 , 2014 . Z. Chen and B. Liu. Topic modeling using topics from many domains, lifelong learning and big data. In Proc. of ICML, pages 703--711, 2014."},{"key":"e_1_3_2_1_10_1","first-page":"2071","volume-title":"Proc. of IJCAI, (AAAI)","author":"Chen Z.","year":"2013","unstructured":"Z. Chen , A. Mukherjee , B. Liu , M. Hsu , M. Castellanos , and R. Ghosh . Leveraging multi-domain prior knowledge in topic models . In Proc. of IJCAI, (AAAI) , pages 2071 -- 2077 , 2013 . Z. Chen, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh. Leveraging multi-domain prior knowledge in topic models. In Proc. of IJCAI, (AAAI), pages 2071--2077, 2013."},{"key":"e_1_3_2_1_11_1","volume-title":"ICML Workshop on Challenges in Representation Learning (WREPL)","author":"Chopra S.","year":"2013","unstructured":"S. Chopra , S. Balakrishnan , and R. Gopalan . DLID: Deep learning for domain adaptation by interpolating between domains . In ICML Workshop on Challenges in Representation Learning (WREPL) , 2013 . S. Chopra, S. Balakrishnan, and R. Gopalan. DLID: Deep learning for domain adaptation by interpolating between domains. In ICML Workshop on Challenges in Representation Learning (WREPL), 2013."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2015.20"},{"key":"e_1_3_2_1_13_1","volume-title":"ECCV workshop","author":"Csurka G.","year":"2014","unstructured":"G. Csurka , B. Chidlovskii , and F. perronnin. Domain adaptation with a domain specific class means classifier. In TASK-CV , ECCV workshop , 2014 . G. Csurka, B. Chidlovskii, and F. perronnin. Domain adaptation with a domain specific class means classifier. In TASK-CV, ECCV workshop, 2014."},{"key":"e_1_3_2_1_14_1","volume-title":"Frustratingly easy domain adaptation. CoRR, arXiv:0907.1815","author":"Daum\u00e9 H.","year":"2009","unstructured":"H. Daum\u00e9 . Frustratingly easy domain adaptation. CoRR, arXiv:0907.1815 , 2009 . H. Daum\u00e9. Frustratingly easy domain adaptation. CoRR, arXiv:0907.1815, 2009."},{"issue":"1","key":"e_1_3_2_1_15_1","first-page":"101","article-title":"Domain adaptation for statistical classifiers","volume":"26","author":"Marcu H.","year":"2006","unstructured":"H. Daume III and D. Marcu . Domain adaptation for statistical classifiers . Journal of Artificial Intelligence Research , 26 ( 1 ): 101 -- 126 , 2006 . H. Daume III and D. Marcu. Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research, 26(1):101--126, 2006.","journal-title":"Journal of Artificial Intelligence Research"},{"key":"e_1_3_2_1_16_1","volume-title":"Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, arXiv:1310.1531","author":"Donahue J.","year":"2013","unstructured":"J. Donahue , Y. Jia , O. Vinyals , J. Hoffman , N. Zhang , E. Tzeng , and T. Darrell . Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, arXiv:1310.1531 , 2013 . J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, arXiv:1310.1531, 2013."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/1553374.1553411"},{"key":"e_1_3_2_1_18_1","first-page":"1338","volume-title":"Proc. of CVPR, (IEEE)","author":"Duan L.","year":"2012","unstructured":"L. Duan , D. Xu , and S.-F. Chang . Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach . In Proc. of CVPR, (IEEE) , pages 1338 -- 1345 , 2012 . L. Duan, D. Xu, and S.-F. Chang. Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach. In Proc. of CVPR, (IEEE), pages 1338--1345, 2012."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.368"},{"key":"e_1_3_2_1_20_1","first-page":"1180","volume-title":"Proc. of ICML","author":"Ganin Y.","year":"2015","unstructured":"Y. Ganin and V. Lempitsky . Unsupervised domain adaptation by backpropagation . In Proc. of ICML , pages 1180 -- 1189 , 2015 . Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Proc. of ICML, pages 1180--1189, 2015."},{"key":"e_1_3_2_1_21_1","volume-title":"Domain-adversarial training of neural networks. CoRR, arXiv:1505.07818","author":"Ganin Y.","year":"2015","unstructured":"Y. Ganin , E. Ustinova , H. Ajakan , P. Germain , H. Larochelle , F. Laviolette , M. Marchand , and V. S. Lempitsky . Domain-adversarial training of neural networks. CoRR, arXiv:1505.07818 , 2015 . Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. S. Lempitsky. Domain-adversarial training of neural networks. CoRR, arXiv:1505.07818, 2015."},{"key":"e_1_3_2_1_22_1","first-page":"513","volume-title":"Proc. of ICML","author":"Glorot X.","year":"2011","unstructured":"X. Glorot , A. Bordes , and Y. Bengio . Domain adaptation for large-scale sentiment classification: A deep learning approach . In Proc. of ICML , pages 513 -- 520 , 2011 . X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proc. of ICML, pages 513--520, 2011."},{"key":"e_1_3_2_1_23_1","first-page":"2066","volume-title":"Proc. of CVPR, (IEEE)","author":"Gong B.","year":"2012","unstructured":"B. Gong , Y. Shi , F. Sha , and K. Grauman . Geodesic flow kernel for unsupervised domain adaptation . In Proc. of CVPR, (IEEE) , pages 2066 -- 2073 , 2012 . B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In Proc. of CVPR, (IEEE), pages 2066--2073, 2012."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126344"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1561\/0600000057"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDAR.2015.7333910"},{"key":"e_1_3_2_1_27_1","volume-title":"Proc. of NIPS, (Curran Associates)","author":"Krizhevsky A.","year":"2012","unstructured":"A. Krizhevsky , I. Sutskever , and G. Hinton . ImageNet classification with deep Convolutional Neural Networks . In Proc. of NIPS, (Curran Associates) , 2012 . A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep Convolutional Neural Networks. In Proc. of NIPS, (Curran Associates), 2012."},{"key":"e_1_3_2_1_28_1","first-page":"942","volume-title":"Proc. of ICML","author":"Kuzborskij I.","year":"2013","unstructured":"I. Kuzborskij and F. Orabona . Stability and hypothesis transfer learning . In Proc. of ICML , pages 942 -- 950 , 2013 . I. Kuzborskij and F. Orabona. Stability and hypothesis transfer learning. In Proc. of ICML, pages 942--950, 2013."},{"key":"e_1_3_2_1_29_1","volume-title":"Proc. of ICML","author":"Long M.","year":"2015","unstructured":"M. Long , Y. Cao , J. Wang , and M. I. Jordan . Learning transferable features with deep adaptation networks . In Proc. of ICML , 2015 . M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. In Proc. of ICML, 2015."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.183"},{"key":"e_1_3_2_1_31_1","volume-title":"Proc. of ICML","author":"Maaten L. v. d.","year":"2013","unstructured":"L. v. d. Maaten , M. Chen , S. Tyree , and K. Weinberger . Learning with marginalized corrupted features . In Proc. of ICML , 2013 . L. v. d. Maaten, M. Chen, S. Tyree, and K. Weinberger. Learning with marginalized corrupted features. In Proc. of ICML, 2013."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/1772690.1772767"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2010.2091281"},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2009.191"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.5555\/1888089.1888106"},{"key":"e_1_3_2_1_37_1","volume-title":"Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556","author":"Simonyan K.","year":"2014","unstructured":"K. Simonyan and A. Zisserman . Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556 , 2014 . K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556, 2014."},{"key":"e_1_3_2_1_38_1","volume-title":"Return of frustratingly easy domain adaptation. CoRR, arXiv:1511.05547","author":"Sun B.","year":"2015","unstructured":"B. Sun , J. Feng , and K. Saenko . Return of frustratingly easy domain adaptation. CoRR, arXiv:1511.05547 , 2015 . B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. CoRR, arXiv:1511.05547, 2015."},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2014.12.003"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390294"},{"key":"e_1_3_2_1_41_1","first-page":"351","volume-title":"Proc. of NIPS, (Curran Associates)","author":"Wager S.","year":"2013","unstructured":"S. Wager , S. I. Wang , and P. Liang . Dropout training as adaptive regularization . In Proc. of NIPS, (Curran Associates) , pages 351 -- 359 , 2013 . S. Wager, S. I. Wang, and P. Liang. Dropout training as adaptive regularization. In Proc. of NIPS, (Curran Associates), pages 351--359, 2013."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/2396761.2398536"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-34487-9_41"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623739"}],"event":{"name":"KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"],"location":"San Francisco California USA","acronym":"KDD '16"},"container-title":["Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/2939672.2939716","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T04:42:56Z","timestamp":1673325776000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/2939672.2939716"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,8,13]]},"references-count":44,"alternative-id":["10.1145\/2939672.2939716","10.1145\/2939672"],"URL":"https:\/\/doi.org\/10.1145\/2939672.2939716","relation":{},"subject":[],"published":{"date-parts":[[2016,8,13]]},"assertion":[{"value":"2016-08-13","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}