{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T02:46:49Z","timestamp":1743734809157,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":43,"publisher":"ACM","license":[{"start":{"date-parts":[[2016,6,14]],"date-time":"2016-06-14T00:00:00Z","timestamp":1465862400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"ERC","award":["682588"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2016,6,14]]},"DOI":"10.1145\/2882903.2882939","type":"proceedings-article","created":{"date-parts":[[2016,6,16]],"date-time":"2016-06-16T19:01:52Z","timestamp":1466103712000},"page":"3-18","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":90,"title":["Learning Linear Regression Models over Factorized Joins"],"prefix":"10.1145","author":[{"given":"Maximilian","family":"Schleich","sequence":"first","affiliation":[{"name":"University of Oxford, Oxford, United Kingdom"}]},{"given":"Dan","family":"Olteanu","sequence":"additional","affiliation":[{"name":"University of Oxford, Oxford, United Kingdom"}]},{"given":"Radu","family":"Ciucanu","sequence":"additional","affiliation":[{"name":"University of Oxford, Oxford, United Kingdom"}]}],"member":"320","published-online":{"date-parts":[[2016,6,14]]},"reference":[{"volume-title":"MLlib: Machine learning in Spark, https:\/\/spark.apache.org\/mllib","year":"2015","key":"e_1_3_2_1_1_1","unstructured":"Apache. MLlib: Machine learning in Spark, https:\/\/spark.apache.org\/mllib , 2015 . Apache. MLlib: Machine learning in Spark, https:\/\/spark.apache.org\/mllib, 2015."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2742796"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/FOCS.2008.43"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.14778\/2556549.2556579"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.14778\/2350229.2350242"},{"key":"e_1_3_2_1_6_1","unstructured":"C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics) 2006. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics) 2006."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.14778\/2732286.2732292"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_25"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/2588555.2593680"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/2043932.2044016"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/2463676.2465338"},{"key":"e_1_3_2_1_12_1","first-page":"1232","volume-title":"NIPS","author":"Dean J.","year":"2012","unstructured":"J. Dean , G. Corrado , R. Monga , K. Chen , M. Devin , Q. V. Le , M. Z. Mao , M. Ranzato , A. W. Senior , P. A. Tucker , K. Yang , and A. Y. Ng . Large scale distributed deep networks . In NIPS , pages 1232 -- 1240 , 2012 . J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, pages 1232--1240, 2012."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.5555\/1953048.2021068"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/2213836.2213874"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1093\/comjnl\/4.3.265"},{"key":"e_1_3_2_1_16_1","volume-title":"http:\/\/grouplens.org\/datasets\/movielens","author":"Group","year":"2003","unstructured":"Group Lens i Research . MovieLens , http:\/\/grouplens.org\/datasets\/movielens , 2003 . GroupLens iResearch. MovieLens, http:\/\/grouplens.org\/datasets\/movielens, 2003."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.14778\/2367502.2367510"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2749432"},{"key":"e_1_3_2_1_19_1","volume-title":"CoRR:1504.04044","author":"Khamis M. A.","year":"2015","unstructured":"M. A. Khamis , H. Q. Ngo , and A. Rudra . FAQ: Questions Asked Frequently , CoRR:1504.04044 , 2015 . M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: Questions Asked Frequently, CoRR:1504.04044, 2015."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2723713"},{"key":"e_1_3_2_1_21_1","first-page":"469","volume-title":"ICML","author":"Liu J.","year":"2014","unstructured":"J. Liu , S. Wright , C. R\u00e9 , V. Bittorf , and S. Sridhar . An asynchronous parallel stochastic coordinate descent algorithm . In ICML , pages 469 -- 477 , 2014 . J. Liu, S. Wright, C. R\u00e9, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordinate descent algorithm. In ICML, pages 469--477, 2014."},{"key":"e_1_3_2_1_22_1","volume-title":"HotOS","author":"McSherry F.","year":"2015","unstructured":"F. McSherry , M. Isard , and D. G. Murray . Scalability! but at what COST ? In HotOS , 2015 . F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what COST? In HotOS, 2015."},{"key":"e_1_3_2_1_23_1","volume-title":"LogicBlox User Days","author":"Menich R.","year":"2013","unstructured":"R. Menich and N. Vasiloglou . The future of LogicBlox machine learning . LogicBlox User Days , 2013 . R. Menich and N. Vasiloglou. The future of LogicBlox machine learning. LogicBlox User Days, 2013."},{"key":"e_1_3_2_1_24_1","volume-title":"Lightning-fast deep learning on Spark via parallel stochastic gradient updates, www.deepdist.com","author":"Neumann D.","year":"2015","unstructured":"D. Neumann . Lightning-fast deep learning on Spark via parallel stochastic gradient updates, www.deepdist.com , 2015 . D. Neumann. Lightning-fast deep learning on Spark via parallel stochastic gradient updates, www.deepdist.com, 2015."},{"key":"e_1_3_2_1_25_1","unstructured":"A. Ng. CS229 Lecture Notes. Stanford & Coursera http:\/\/cs229.stanford.edu\/ 2014. A. Ng. CS229 Lecture Notes. Stanford & Coursera http:\/\/cs229.stanford.edu\/ 2014."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/2213556.2213565"},{"key":"e_1_3_2_1_27_1","first-page":"693","volume-title":"NIPS","author":"Niu F.","year":"2011","unstructured":"F. Niu , B. Recht , C. R\u00e9 , and S. J. Wright . Hogwild: A lock-free approach to parallelizing stochastic gradient descent . In NIPS , pages 693 -- 701 , 2011 . F. Niu, B. Recht, C. R\u00e9, and S. J. Wright. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In NIPS, pages 693--701, 2011."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/2656335"},{"issue":"03","key":"e_1_3_2_1_29_1","first-page":"406","article-title":"A generalized inverse for matrices. Math. Proc., Cambridge, Phil","volume":"51","author":"Penrose R.","year":"1955","unstructured":"R. Penrose . A generalized inverse for matrices. Math. Proc., Cambridge, Phil ., Soc. , 51 ( 03 ): 406 -- 413 , 1955 . R. Penrose. A generalized inverse for matrices. Math. Proc., Cambridge, Phil., Soc., 51(03):406--413, 1955.","journal-title":"Soc."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/2645710.2645725"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/2486767.2486771"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/2799562.2799563"},{"key":"e_1_3_2_1_33_1","volume-title":"R: A Language and Environment for Statistical Computing","author":"Team R Core","year":"2013","unstructured":"R Core Team . R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing , www.r-project.org, 2013 . R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, www.r-project.org, 2013."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2742911"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12532-013-0053-8"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.14778\/2535573.2488340"},{"key":"e_1_3_2_1_37_1","volume-title":"ICML","author":"Richt\u00e1rik P.","year":"2015","unstructured":"P. Richt\u00e1rik and M. Schmidt . Modern convex optimization methods for large-scale empirical risk minimization . In ICML , 2015 . Invited Tutorial. P. Richt\u00e1rik and M. Schmidt. Modern convex optimization methods for large-scale empirical risk minimization. In ICML, 2015. Invited Tutorial."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2015.7113367"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.14778\/2809974.2809991"},{"key":"e_1_3_2_1_40_1","unstructured":"The StatsModels development team. StatsModels: Statistics in Python http:\/\/statsmodels.sourceforge.net 2012. The StatsModels development team. StatsModels: Statistics in Python http:\/\/statsmodels.sourceforge.net 2012."},{"key":"e_1_3_2_1_41_1","first-page":"96","volume-title":"ICDT","author":"Veldhuizen T. L.","year":"2014","unstructured":"T. L. Veldhuizen . Triejoin : A simple, worst-case optimal join algorithm . In ICDT , pages 96 -- 106 , 2014 . T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In ICDT, pages 96--106, 2014."},{"key":"e_1_3_2_1_42_1","first-page":"15","volume-title":"NSDI","author":"Zaharia M.","year":"2012","unstructured":"M. Zaharia , M. Chowdhury , T. Das , A. Dave , J. Ma , M. McCauly , M. J. Franklin , S. Shenker , and I. Stoica . Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing . In NSDI , pages 15 -- 28 , 2012 . M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, pages 15--28, 2012."},{"key":"e_1_3_2_1_43_1","first-page":"2595","volume-title":"NIPS","author":"Zinkevich M.","year":"2010","unstructured":"M. Zinkevich , M. Weimer , A. J. Smola , and L. Li . Parallelized stochastic gradient descent . In NIPS , pages 2595 -- 2603 , 2010 . M. Zinkevich, M. Weimer, A. J. Smola, and L. Li. Parallelized stochastic gradient descent. In NIPS, pages 2595--2603, 2010."}],"event":{"name":"SIGMOD\/PODS'16: International Conference on Management of Data","sponsor":["SIGMOD ACM Special Interest Group on Management of Data"],"location":"San Francisco California USA","acronym":"SIGMOD\/PODS'16"},"container-title":["Proceedings of the 2016 International Conference on Management of Data"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/2882903.2882939","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T07:35:58Z","timestamp":1673422558000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/2882903.2882939"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,6,14]]},"references-count":43,"alternative-id":["10.1145\/2882903.2882939","10.1145\/2882903"],"URL":"https:\/\/doi.org\/10.1145\/2882903.2882939","relation":{},"subject":[],"published":{"date-parts":[[2016,6,14]]},"assertion":[{"value":"2016-06-14","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}