{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,7,15]],"date-time":"2023-07-15T04:16:04Z","timestamp":1689394564540},"reference-count":33,"publisher":"World Scientific Pub Co Pte Ltd","issue":"02","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Comp. Intel. Appl."],"published-print":{"date-parts":[[2023,6]]},"abstract":" Over the last decades, facing the blooming growth of technological progress, interest in digital devices such as computed tomography (CT) as well as magnetic resource imaging which emerged in the 1970s has continued to grow. Such medical data can be invested in numerous visual recognition applications. In this context, these data may be segmented to generate a precise 3D representation of an organ that may be visualized and manipulated to aid surgeons during surgical interventions. Notably, the segmentation process is performed manually through the use of image processing software. Within this framework, multiple outstanding approaches were elaborated. However, the latter proved to be inefficient and required human intervention to opt for the segmentation area appropriately. Over the last few years, automatic methods which are based on deep learning approaches have outperformed the state-of-the-art segmentation approaches due to the use of the relying on Convolutional Neural Networks. In this paper, a segmentation of preoperative patients CT scans based on deep learning architecture was carried out to determine the target organ\u2019s shape. As a result, the segmented 2D CT images are used to generate the patient-specific biomechanical 3D model. To assess the efficiency and reliability of the proposed approach, the 3DIRCADb dataset was invested. The segmentation results were obtained through the implementation of a U-net architecture with good accuracy. <\/jats:p>","DOI":"10.1142\/s1469026823500062","type":"journal-article","created":{"date-parts":[[2023,6,6]],"date-time":"2023-06-06T19:18:56Z","timestamp":1686079136000},"source":"Crossref","is-referenced-by-count":0,"title":["CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology"],"prefix":"10.1142","volume":"22","author":[{"given":"Nessrine","family":"Elloumi","sequence":"first","affiliation":[{"name":"SETIT, ISBS, University of Sfax, Sfax, BP 1175 - 3000 Sfax, Tunisia"}]},{"given":"Aicha","family":"Ben Makhlouf","sequence":"additional","affiliation":[{"name":"Laboratory of Advanced Technology and Intelligent Systems (LATIS), ENISO, University of Sousse, Sousse 4023, Sousse, Tunisia"}]},{"given":"Ayman","family":"Afli","sequence":"additional","affiliation":[{"name":"Laboratory of Advanced Technology and Intelligent Systems (LATIS), ENISO, University of Sousse, Sousse 4023, Sousse, Tunisia"}]},{"given":"Borhen","family":"Louhichi","sequence":"additional","affiliation":[{"name":"Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia"},{"name":"University of Sousse (ISSATSo, LMS), 4023, Sousse, Tunisia"}]},{"given":"Mehdi","family":"Jaidane","sequence":"additional","affiliation":[{"name":"Sahloul University Hospital, Sousse 4011, Sousse, Tunisia"}]},{"given":"Jo\u00e3o Manuel R. S.","family":"Tavares","sequence":"additional","affiliation":[{"name":"Instituto de Cincia e Inovaco em Engenharia, Mecnica e Engenharia Industrial, Departamento de Engenharia Mecnica, Faculdade de Engenharia Universidade do Porto, Porto 4200-465, Portugal"}]}],"member":"219","published-online":{"date-parts":[[2023,6,5]]},"reference":[{"issue":"5","key":"S1469026823500062BIB001","doi-asserted-by":"crossref","first-page":"1605","DOI":"10.1002\/hep.31173","volume":"72","author":"Paik J. M.","year":"2020","journal-title":"Hepatology"},{"issue":"9","key":"S1469026823500062BIB002","doi-asserted-by":"crossref","first-page":"2029","DOI":"10.1111\/liv.15251","volume":"42","author":"Zhang C.-H.","year":"2022","journal-title":"Liver Int."},{"issue":"5","key":"S1469026823500062BIB003","doi-asserted-by":"crossref","first-page":"e2010","DOI":"10.1002\/rcs.2010","volume":"15","author":"Gifari M. W.","year":"2019","journal-title":"Int. J. Med. Robot. Comput. Assist. Surg."},{"issue":"4","key":"S1469026823500062BIB004","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1007\/s11548-013-0828-4","volume":"8","author":"M\u00fcller M.","year":"2013","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"S1469026823500062BIB005","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/8415_2012_125","volume-title":"Soft Tissue Biomechanical Modeling for Computer Assisted Surgery","author":"Faure F.","year":"2012"},{"issue":"10","key":"S1469026823500062BIB006","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1002\/acm2.13003","volume":"21","author":"Alirr O. I.","year":"2020","journal-title":"J. Appl. Clin. Med. Phys."},{"issue":"5","key":"S1469026823500062BIB008","doi-asserted-by":"crossref","first-page":"744","DOI":"10.3390\/diagnostics11050744","volume":"11","author":"Masood M.","year":"2021","journal-title":"Diagnostics"},{"key":"S1469026823500062BIB009","doi-asserted-by":"crossref","first-page":"1962","DOI":"10.1109\/TIP.2021.3049961","volume":"30","author":"Pimpalkhute V. A.","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"S1469026823500062BIB010","first-page":"1","volume-title":"2021 6th Int. Conf. Convergence in Technology (I2CT)","author":"Shedbalkar J.","year":"2021"},{"issue":"9","key":"S1469026823500062BIB011","first-page":"689","volume":"2","author":"Rahman M. M.","year":"2013","journal-title":"Int. J. Res. Comput. Commun. Technol."},{"issue":"5","key":"S1469026823500062BIB012","doi-asserted-by":"crossref","first-page":"623","DOI":"10.31661\/jbpe.v0i0.2002-1072","volume":"10","author":"Anam C.","year":"2020","journal-title":"J. Biomed. Phys. Eng."},{"issue":"26","key":"S1469026823500062BIB013","doi-asserted-by":"crossref","first-page":"7110","DOI":"10.1364\/AO.58.007110","volume":"58","author":"Tounsi Y.","year":"2019","journal-title":"Appl. Opt."},{"key":"S1469026823500062BIB014","doi-asserted-by":"crossref","first-page":"108245","DOI":"10.1016\/j.patcog.2021.108245","volume":"122","author":"Akcay S.","year":"2022","journal-title":"Pattern Recogn."},{"key":"S1469026823500062BIB015","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1016\/j.neucom.2017.06.053","volume":"267","author":"Saxena A.","year":"2017","journal-title":"Neurocomputing"},{"issue":"4","key":"S1469026823500062BIB016","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/S0262-8856(02)00021-5","volume":"20","author":"Ong S. H.","year":"2002","journal-title":"Image Vis. Comput."},{"issue":"1","key":"S1469026823500062BIB017","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.carj.2012.12.005","volume":"65","author":"Sahi K.","year":"2014","journal-title":"Canad. Assoc. Radiol. J."},{"issue":"2","key":"S1469026823500062BIB018","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s11548-016-1467-3","volume":"12","author":"Lu F.","year":"2017","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"S1469026823500062BIB019","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2018\/1753480","volume":"2018","author":"Sugimori H.","year":"2018","journal-title":"J. Healthcare Eng."},{"key":"S1469026823500062BIB020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/03772063.2021.2021819","author":"Siri S. K.","year":"2022","journal-title":"IETE J. Res."},{"issue":"4","key":"S1469026823500062BIB021","doi-asserted-by":"crossref","first-page":"798","DOI":"10.1587\/transinf.E96.D.798","volume":"96","author":"Foruzan A. H.","year":"2013","journal-title":"IEICE Trans. Inf. Syst."},{"key":"S1469026823500062BIB022","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1109\/CISP.2010.5648009","volume-title":"2010 3rd Int. Congress on Image and Signal Processing","author":"Chi D.","year":"2010"},{"issue":"17","key":"S1469026823500062BIB023","doi-asserted-by":"crossref","first-page":"3722","DOI":"10.3390\/s19173722","volume":"19","author":"Nasrullah N.","year":"2019","journal-title":"Sensors"},{"issue":"7","key":"S1469026823500062BIB024","doi-asserted-by":"crossref","first-page":"1470","DOI":"10.1109\/TMI.2017.2673121","volume":"36","author":"De Vos B. D.","year":"2017","journal-title":"IEEE Trans. Med. Imag."},{"key":"S1469026823500062BIB026","first-page":"1","volume-title":"Int. Conf. Advances in Computer Entertainment","author":"Kasapakis V.","year":"2017"},{"issue":"1","key":"S1469026823500062BIB027","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s10439-015-1419-z","volume":"44","author":"Plantefeve R.","year":"2016","journal-title":"Ann. Biomed. Eng."},{"issue":"5","key":"S1469026823500062BIB028","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1007\/s00276-010-0763-9","volume":"33","author":"S\u00e1nchez-Margallo F.","year":"2011","journal-title":"Surg. Radiol. Anatomy"},{"key":"S1469026823500062BIB029","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1007\/978-3-319-27857-5_5","volume-title":"Int. Symp. Visual Computing","author":"Amorim P.","year":"2015"},{"key":"S1469026823500062BIB030","first-page":"234","volume-title":"Int. Conf. Medical Image Computing and Computer-Assisted intervention","author":"Ronneberger O.","year":"2015"},{"issue":"12","key":"S1469026823500062BIB031","doi-asserted-by":"crossref","first-page":"2663","DOI":"10.1109\/TMI.2018.2845918","volume":"37","author":"Li X.","year":"2018","journal-title":"IEEE Trans. Med. Imag."},{"key":"S1469026823500062BIB032","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1109\/TIP.2021.3139241","volume":"31","author":"Li X.","year":"2022","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"S1469026823500062BIB033","doi-asserted-by":"crossref","first-page":"4895","DOI":"10.3390\/app11114895","volume":"11","author":"Affane A.","year":"2021","journal-title":"Appl. Sci."},{"key":"S1469026823500062BIB034","doi-asserted-by":"crossref","first-page":"20585","DOI":"10.1109\/ACCESS.2019.2896961","volume":"7","author":"Ahmad M.","year":"2019","journal-title":"IEEE Access"},{"key":"S1469026823500062BIB035","doi-asserted-by":"crossref","first-page":"109431","DOI":"10.1016\/j.mehy.2019.109431","volume":"134","author":"Budak \u00dc.","year":"2020","journal-title":"Med. Hyp."}],"container-title":["International Journal of Computational Intelligence and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S1469026823500062","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,14]],"date-time":"2023-07-14T08:05:27Z","timestamp":1689321927000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/10.1142\/S1469026823500062"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":33,"journal-issue":{"issue":"02","published-print":{"date-parts":[[2023,6]]}},"alternative-id":["10.1142\/S1469026823500062"],"URL":"https:\/\/doi.org\/10.1142\/s1469026823500062","relation":{},"ISSN":["1469-0268","1757-5885"],"issn-type":[{"value":"1469-0268","type":"print"},{"value":"1757-5885","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,6]]}}}