{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,2,20]],"date-time":"2023-02-20T11:18:29Z","timestamp":1676891909602},"reference-count":13,"publisher":"World Scientific Pub Co Pte Lt","issue":"03","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Wavelets Multiresolut Inf. Process."],"published-print":{"date-parts":[[2010,5]]},"abstract":" While constructing a dyadic wavelet set through an approach which is purely set-theoretic, Ionascu observed that a dyadic one-dimensional wavelet set W gives rise to a specific measurable, bijective, piecewise increasing selfmap [Formula: see text] on [0, 1) and termed it to be a wavelet induced isomorphism. Further, he found that such maps provide wavelet sets which, in turn, characterize wavelet sets. In this paper, we consider two-interval, three-interval and symmetric four-interval wavelet sets and determine their wavelet induced isomorphisms. Also, fixed point sets of [Formula: see text] are determined for these wavelet sets. <\/jats:p>","DOI":"10.1142\/s0219691310003523","type":"journal-article","created":{"date-parts":[[2010,5,27]],"date-time":"2010-05-27T09:55:46Z","timestamp":1274954146000},"page":"359-371","source":"Crossref","is-referenced-by-count":7,"title":["ON WAVELET INDUCED ISOMORPHISMS"],"prefix":"10.1142","volume":"08","author":[{"given":"DIVYA","family":"SINGH","sequence":"first","affiliation":[{"name":"Department of Mathematics, University of Allahabad, Allahabad 211 002, India"}]}],"member":"219","published-online":{"date-parts":[[2011,11,21]]},"reference":[{"key":"rf1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02921878"},{"key":"rf2","first-page":"737","volume":"29","author":"Azoff E. A.","journal-title":"Houston J. Math."},{"key":"rf3","doi-asserted-by":"publisher","DOI":"10.1007\/BF01257191"},{"key":"rf4","volume":"134","author":"Dai X.","journal-title":"Mem. Amer. Math. Soc."},{"key":"rf5","doi-asserted-by":"publisher","DOI":"10.1007\/BF02649106"},{"key":"rf6","doi-asserted-by":"publisher","DOI":"10.1090\/conm\/216\/02962"},{"key":"rf7","first-page":"315","volume":"2","author":"Fang X.","journal-title":"J. Fourier Anal. Appl."},{"key":"rf8","first-page":"345","volume":"41","author":"Ha Y.","journal-title":"Michigan Math. J."},{"key":"rf9","doi-asserted-by":"publisher","DOI":"10.1201\/9781420049985"},{"key":"rf10","doi-asserted-by":"crossref","first-page":"593","DOI":"10.14321\/realanalexch.28.2.0593","volume":"28","author":"Ionascu E. J.","journal-title":"Real Anal. Exchange"},{"key":"rf11","doi-asserted-by":"publisher","DOI":"10.1007\/BF02479674"},{"key":"rf12","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9939-98-04676-0"},{"key":"rf13","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9939-99-04555-4"}],"container-title":["International Journal of Wavelets, Multiresolution and Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0219691310003523","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,7]],"date-time":"2019-08-07T03:17:39Z","timestamp":1565147859000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S0219691310003523"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2010,5]]},"references-count":13,"journal-issue":{"issue":"03","published-online":{"date-parts":[[2011,11,21]]},"published-print":{"date-parts":[[2010,5]]}},"alternative-id":["10.1142\/S0219691310003523"],"URL":"https:\/\/doi.org\/10.1142\/s0219691310003523","relation":{},"ISSN":["0219-6913","1793-690X"],"issn-type":[{"value":"0219-6913","type":"print"},{"value":"1793-690X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2010,5]]}}}