{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T07:21:10Z","timestamp":1710228070129},"reference-count":10,"publisher":"World Scientific Pub Co Pte Lt","issue":"04","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Algebra Comput."],"published-print":{"date-parts":[[2019,6]]},"abstract":" A semigroup is called factorizable if each of its elements can be written as a product. We study equivalences and adjunctions between various categories of acts over a fixed factorizable semigroup. We prove that two factorizable semigroups are Morita equivalent if and only if they are strongly Morita equivalent. We also show that Morita equivalence of finite factorizable semigroups is algorithmically decidable in finite time. <\/jats:p>","DOI":"10.1142\/s0218196719500243","type":"journal-article","created":{"date-parts":[[2019,1,15]],"date-time":"2019-01-15T05:43:29Z","timestamp":1547531009000},"page":"723-741","source":"Crossref","is-referenced-by-count":5,"title":["Morita equivalence of factorizable semigroups"],"prefix":"10.1142","volume":"29","author":[{"given":"Valdis","family":"Laan","sequence":"first","affiliation":[{"name":"Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia"}]},{"given":"\u00dclo","family":"Reimaa","sequence":"additional","affiliation":[{"name":"Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia"}]}],"member":"219","published-online":{"date-parts":[[2019,6,18]]},"reference":[{"key":"S0218196719500243BIB001","doi-asserted-by":"publisher","DOI":"10.1007\/s101140000056"},{"key":"S0218196719500243BIB002","unstructured":"S. Eilenberg, Automata, Languages, and Machines. Vol. B, Pure and Applied Mathematics, Vol. 59. (Academic Press, New York\u2013London, 1976), xiii+387 pp."},{"key":"S0218196719500243BIB003","doi-asserted-by":"publisher","DOI":"10.1017\/S0004972700006353"},{"key":"S0218196719500243BIB004","doi-asserted-by":"publisher","DOI":"10.1007\/s10998-010-1081-z"},{"key":"S0218196719500243BIB005","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpaa.2011.02.017"},{"key":"S0218196719500243BIB006","doi-asserted-by":"publisher","DOI":"10.1016\/j.jalgebra.2018.02.018"},{"key":"S0218196719500243BIB007","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpaa.2010.04.030"},{"key":"S0218196719500243BIB008","unstructured":"S. Mac Lane, Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, Vol. 5 (Springer-Verlag, New York, 1998), p. 103."},{"key":"S0218196719500243BIB010","first-page":"67","volume":"20","author":"Reimaa \u00dc.","year":"2016","journal-title":"Acta Comment. Univ. Tartu. Math."},{"key":"S0218196719500243BIB012","doi-asserted-by":"publisher","DOI":"10.1006\/jabr.1996.0125"}],"container-title":["International Journal of Algebra and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0218196719500243","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,6]],"date-time":"2019-08-06T13:29:19Z","timestamp":1565098159000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S0218196719500243"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6]]},"references-count":10,"journal-issue":{"issue":"04","published-online":{"date-parts":[[2019,6,18]]},"published-print":{"date-parts":[[2019,6]]}},"alternative-id":["10.1142\/S0218196719500243"],"URL":"https:\/\/doi.org\/10.1142\/s0218196719500243","relation":{},"ISSN":["0218-1967","1793-6500"],"issn-type":[{"value":"0218-1967","type":"print"},{"value":"1793-6500","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,6]]}}}