{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,11]],"date-time":"2023-12-11T18:53:43Z","timestamp":1702320823047},"reference-count":43,"publisher":"World Scientific Pub Co Pte Lt","issue":"02","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Soft. Eng. Knowl. Eng."],"published-print":{"date-parts":[[2021,2]]},"abstract":" Development without any defect is unsubstantial. Timely detection of software defects favors the proper resource utilization saving time, effort and money. With the increasing size and complexity of software, demand for accurate and efficient prediction models is increasing. Recently, search-based techniques (SBTs) have fascinated many researchers for Software Defect Prediction (SDP). The goal of this study is to conduct an empirical evaluation to assess the applicability of SBTs for predicting software defects in object-oriented (OO) softwares. In this study, 16 SBTs are exploited to build defect prediction models for 13 OO software projects. Stable performance measures\u00a0\u2014 GMean, Balance and Receiver Operating Characteristic-Area Under Curve (ROC-AUC) are employed to probe into the predictive capability of developed models, taking into consideration the imbalanced nature of software datasets. Proper measures are taken to handle the stochastic behavior of SBTs. The significance of results is statistically validated using the Friedman test complied with Wilcoxon post hoc analysis. The results confirm that software defects can be detected in the early phases of software development with help of SBTs. This paper identifies the effective subset of SBTs that will aid software practitioners to timely detect the probable software defects, therefore, saving resources and bringing up good quality softwares. Eight SBTs\u00a0\u2014 sUpervised Classification System (UCS), Bioinformatics-oriented hierarchical evolutionary learning (BIOHEL), CHC, Genetic Algorithm-based Classifier System with Adaptive Discretization Intervals (GA_ADI), Genetic Algorithm-based Classifier System with Intervalar Rule (GA_INT), Memetic Pittsburgh Learning Classifier System (MPLCS), Population-Based Incremental Learning (PBIL) and Steady-State Genetic Algorithm for Instance Selection (SGA) are found to be statistically good defect predictors. <\/jats:p>","DOI":"10.1142\/s0218194021500054","type":"journal-article","created":{"date-parts":[[2021,3,3]],"date-time":"2021-03-03T08:45:54Z","timestamp":1614761154000},"page":"193-215","source":"Crossref","is-referenced-by-count":3,"title":["Predicting Software Defects for Object-Oriented Software Using Search-based Techniques"],"prefix":"10.1142","volume":"31","author":[{"given":"Ruchika","family":"Malhotra","sequence":"first","affiliation":[{"name":"Department of Computer Science and Engineering, Delhi Technological University, Delhi, India"}]},{"given":"Juhi","family":"Jain","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Delhi Technological University, Delhi, India"}]}],"member":"219","published-online":{"date-parts":[[2021,3,2]]},"reference":[{"key":"S0218194021500054BIB001","doi-asserted-by":"publisher","DOI":"10.1201\/b19292"},{"key":"S0218194021500054BIB002","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-12029-9_1"},{"key":"S0218194021500054BIB003","doi-asserted-by":"publisher","DOI":"10.1016\/j.compeleceng.2018.08.017"},{"key":"S0218194021500054BIB004","doi-asserted-by":"publisher","DOI":"10.1109\/TSE.2005.89"},{"key":"S0218194021500054BIB005","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2014.11.023"},{"key":"S0218194021500054BIB006","doi-asserted-by":"publisher","DOI":"10.1145\/2593833.2593842"},{"key":"S0218194021500054BIB007","doi-asserted-by":"publisher","DOI":"10.1049\/iet-sen.2017.0148"},{"key":"S0218194021500054BIB008","first-page":"35","volume":"4","author":"Xiang C.","year":"2017","journal-title":"Appl. Res. Comp."},{"issue":"3","key":"S0218194021500054BIB009","first-page":"77","volume":"7","author":"Ryu D.","year":"2018","journal-title":"KIPS Tr. Software and Data Eng."},{"key":"S0218194021500054BIB010","doi-asserted-by":"publisher","DOI":"10.1002\/cpe.5478"},{"key":"S0218194021500054BIB011","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-15-3425-6_22"},{"key":"S0218194021500054BIB012","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-02152-7_5"},{"key":"S0218194021500054BIB013","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-016-2437-y"},{"key":"S0218194021500054BIB014","doi-asserted-by":"publisher","DOI":"10.1007\/s10586-018-1696-z"},{"key":"S0218194021500054BIB015","doi-asserted-by":"publisher","DOI":"10.1145\/3183519.3183547"},{"key":"S0218194021500054BIB016","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2018.06.025"},{"key":"S0218194021500054BIB018","doi-asserted-by":"publisher","DOI":"10.1145\/1868328.1868342"},{"key":"S0218194021500054BIB019","doi-asserted-by":"publisher","DOI":"10.1109\/32.544352"},{"key":"S0218194021500054BIB020","doi-asserted-by":"publisher","DOI":"10.1007\/s11219-009-9079-6"},{"key":"S0218194021500054BIB021","doi-asserted-by":"publisher","DOI":"10.1109\/32.295895"},{"key":"S0218194021500054BIB022","doi-asserted-by":"publisher","DOI":"10.1109\/32.979986"},{"issue":"3","key":"S0218194021500054BIB023","first-page":"1","volume":"2","author":"Martin R. C.","year":"1995","journal-title":"Rep. Object Anal. Design"},{"key":"S0218194021500054BIB024","volume-title":"Object-oriented Metrics: Measures of Complexity","author":"Henderson-Sellers B.","year":"1995"},{"key":"S0218194021500054BIB025","doi-asserted-by":"publisher","DOI":"10.1007\/s12293-008-0005-4"},{"key":"S0218194021500054BIB026","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2003.819265"},{"key":"S0218194021500054BIB027","doi-asserted-by":"publisher","DOI":"10.1080\/00207720600879641"},{"key":"S0218194021500054BIB028","doi-asserted-by":"publisher","DOI":"10.1016\/j.parco.2003.12.015"},{"key":"S0218194021500054BIB029","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-24855-2_88"},{"key":"S0218194021500054BIB030","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-71231-2_5"},{"key":"S0218194021500054BIB031","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCB.2004.842247"},{"key":"S0218194021500054BIB032","doi-asserted-by":"publisher","DOI":"10.1162\/evco.2009.17.3.307"},{"key":"S0218194021500054BIB033","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-30483-8_35"},{"key":"S0218194021500054BIB034","series-title":"Lecture Notes in Artificial Intelligence","first-page":"280","volume-title":"6th European Conf. Machine Learning","author":"Venturini G.","year":"1993"},{"key":"S0218194021500054BIB035","doi-asserted-by":"publisher","DOI":"10.1162\/106365603322365289"},{"key":"S0218194021500054BIB036","doi-asserted-by":"publisher","DOI":"10.1162\/evco.1995.3.2.149"},{"key":"S0218194021500054BIB037","first-page":"255","volume":"17","author":"Alcal\u00e1-Fdez J.","year":"2011","journal-title":"J. Mult.-Valued Log. S."},{"key":"S0218194021500054BIB038","doi-asserted-by":"publisher","DOI":"10.1007\/s10664-013-9249-9"},{"key":"S0218194021500054BIB039","doi-asserted-by":"publisher","DOI":"10.1007\/s10515-011-0092-1"},{"key":"S0218194021500054BIB040","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2005.10.010"},{"key":"S0218194021500054BIB041","doi-asserted-by":"publisher","DOI":"10.1007\/s10664-016-9488-7"},{"key":"S0218194021500054BIB042","doi-asserted-by":"publisher","DOI":"10.1016\/j.infsof.2017.06.004"},{"key":"S0218194021500054BIB043","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177731944"},{"key":"S0218194021500054BIB044","first-page":"171","volume-title":"Selected Tables in Mathematical Statistics","volume":"1","author":"Wilcoxon F.","year":"1972"}],"container-title":["International Journal of Software Engineering and Knowledge Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0218194021500054","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,3,3]],"date-time":"2021-03-03T08:46:55Z","timestamp":1614761215000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S0218194021500054"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2]]},"references-count":43,"journal-issue":{"issue":"02","published-print":{"date-parts":[[2021,2]]}},"alternative-id":["10.1142\/S0218194021500054"],"URL":"https:\/\/doi.org\/10.1142\/s0218194021500054","relation":{},"ISSN":["0218-1940","1793-6403"],"issn-type":[{"value":"0218-1940","type":"print"},{"value":"1793-6403","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,2]]}}}