{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T07:06:31Z","timestamp":1723014391396},"reference-count":34,"publisher":"World Scientific Pub Co Pte Ltd","issue":"11","funder":[{"DOI":"10.13039\/501100001501","name":"University Grants Commission","doi-asserted-by":"publisher","award":["F.510\/7\/DSA-1\/2015(SAP-I)"],"id":[{"id":"10.13039\/501100001501","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Bifurcation Chaos"],"published-print":{"date-parts":[[2022,9,15]]},"abstract":" Constant prey refuge with immigration and harvesting in two species would result in significant diversity in the dynamics of a prey\u2013predator population. The phrase \u201crefuge\u201d increases the likelihood of prey population survival in the face of a predator population. Based on these findings, we created and examined a two-species prey\u2013predator system with immigration and harvesting factors, including refuge to only prey population. All ecologically possible equilibrium points are studied for the proposed system. Routh\u2013Hurwitz stability criterion is used for local stability analysis. Global stability of the interior equilibrium point is examined with a suitable Lyapunov function. Local bifurcation of the proposed system, such as saddle-node bifurcation, is analyzed. The conditions for the emergence of this bifurcation at the critical threshold near the nonhyperbolic equilibrium point are established by utilizing Sotomayor\u2019s theorem. The transversality condition is validated for the occurrence of Hopf-bifurcation. The first Lyapunov number is exploited for determining the nature of Hopf bifurcating periodic solution. Finally, numerical simulations are illustrated to validate our theoretical predictions. <\/jats:p>","DOI":"10.1142\/s0218127422501723","type":"journal-article","created":{"date-parts":[[2022,9,29]],"date-time":"2022-09-29T08:12:40Z","timestamp":1664439160000},"source":"Crossref","is-referenced-by-count":3,"title":["Stability and Bifurcation Analysis of Two-Species Prey\u2013Predator Model Incorporating External Factors"],"prefix":"10.1142","volume":"32","author":[{"given":"M.","family":"Priyanka","sequence":"first","affiliation":[{"name":"Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624 302, Tamil Nadu, India"}]},{"given":"P.","family":"Muthukumar","sequence":"additional","affiliation":[{"name":"Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624 302, Tamil Nadu, India"}]},{"given":"Sachin","family":"Bhalekar","sequence":"additional","affiliation":[{"name":"School of Mathematics and Statistics, University of Hyderabad, Hyderabad-500 046, India"}]}],"member":"219","published-online":{"date-parts":[[2022,9,26]]},"reference":[{"key":"S0218127422501723BIB001","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecocom.2020.100888"},{"key":"S0218127422501723BIB002","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2020.110420"},{"key":"S0218127422501723BIB003","doi-asserted-by":"publisher","DOI":"10.1006\/jmaa.2000.7343"},{"key":"S0218127422501723BIB004","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2019.122844"},{"key":"S0218127422501723BIB005","doi-asserted-by":"publisher","DOI":"10.1016\/S0092-8240(86)90004-2"},{"key":"S0218127422501723BIB006","volume-title":"The Struggle for Existence: A Classic of Mathematical Biology and Ecology","author":"Gause G. F.","year":"2019"},{"key":"S0218127422501723BIB007","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-65621-2"},{"key":"S0218127422501723BIB008","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1140\/epjp\/s13360-020-01001-7","volume":"136","author":"Kaviya R.","year":"2021","journal-title":"The European Phys. J. Plus"},{"key":"S0218127422501723BIB009","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2018.12.011"},{"key":"S0218127422501723BIB010","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127422500821"},{"key":"S0218127422501723BIB011","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.6.7.410"},{"key":"S0218127422501723BIB012","doi-asserted-by":"publisher","DOI":"10.1007\/s10668-021-01532-8"},{"key":"S0218127422501723BIB013","doi-asserted-by":"publisher","DOI":"10.1007\/s12190-020-01321-y"},{"key":"S0218127422501723BIB014","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127421500590"},{"key":"S0218127422501723BIB015","doi-asserted-by":"publisher","DOI":"10.1007\/s40808-020-01049-5"},{"key":"S0218127422501723BIB016","doi-asserted-by":"publisher","DOI":"10.1016\/j.cjph.2020.02.012"},{"key":"S0218127422501723BIB017","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecocom.2019.100770"},{"key":"S0218127422501723BIB018","volume-title":"Differential Equations and Dynamical Systems","volume":"7","author":"Perko L.","year":"2013"},{"key":"S0218127422501723BIB019","doi-asserted-by":"publisher","DOI":"10.1016\/j.aml.2020.106846"},{"key":"S0218127422501723BIB020","volume-title":"Differential Equations","author":"Ross S. L.","year":"2007"},{"key":"S0218127422501723BIB021","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecocom.2020.100826"},{"key":"S0218127422501723BIB022","doi-asserted-by":"publisher","DOI":"10.1016\/j.apm.2020.09.046"},{"key":"S0218127422501723BIB023","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127421500462"},{"key":"S0218127422501723BIB024","doi-asserted-by":"publisher","DOI":"10.1016\/0040-5809(87)90019-0"},{"key":"S0218127422501723BIB025","doi-asserted-by":"publisher","DOI":"10.1007\/s12190-020-01373-0"},{"key":"S0218127422501723BIB026","doi-asserted-by":"publisher","DOI":"10.1007\/s12190-018-1207-7"},{"key":"S0218127422501723BIB027","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13662-020-03162-2","volume":"2021","author":"Vinoth S.","year":"2021","journal-title":"Adv. Diff. Eqs."},{"key":"S0218127422501723BIB028","doi-asserted-by":"publisher","DOI":"10.1155\/2022\/6931354"},{"key":"S0218127422501723BIB029","doi-asserted-by":"publisher","DOI":"10.1016\/j.matcom.2021.05.023"},{"key":"S0218127422501723BIB030","volume-title":"Introduction to Applied Nonlinear Dynamical Systems and Chaos","volume":"2","author":"Wiggins S.","year":"2003"},{"key":"S0218127422501723BIB031","doi-asserted-by":"publisher","DOI":"10.3934\/math.2021218"},{"key":"S0218127422501723BIB032","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127421502163"},{"key":"S0218127422501723BIB033","doi-asserted-by":"publisher","DOI":"10.1016\/j.aml.2016.06.013"},{"key":"S0218127422501723BIB034","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2019.03.034"}],"container-title":["International Journal of Bifurcation and Chaos"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0218127422501723","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,29]],"date-time":"2022-09-29T08:19:26Z","timestamp":1664439566000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/10.1142\/S0218127422501723"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,15]]},"references-count":34,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2022,9,15]]}},"alternative-id":["10.1142\/S0218127422501723"],"URL":"https:\/\/doi.org\/10.1142\/s0218127422501723","relation":{},"ISSN":["0218-1274","1793-6551"],"issn-type":[{"value":"0218-1274","type":"print"},{"value":"1793-6551","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,9,15]]}}}