{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:42:35Z","timestamp":1740120155702,"version":"3.37.3"},"reference-count":23,"publisher":"World Scientific Pub Co Pte Ltd","issue":"13","funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11471289","11571318"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Bifurcation Chaos"],"published-print":{"date-parts":[[2017,12,15]]},"abstract":" This paper considers a class of three-dimensional systems constructed by a rotating planar symmetric cubic vector field. To study its periodic orbits including homoclinic orbits, which may be knotted in space, we classify the types of periodic orbits and then calculate their exact parametric representations. Our study shows that this class of systems has infinitely many distinct types of knotted periodic orbits, which lie on three families of invariant tori. Numerical examples of [Formula: see text]-torus knot periodic orbits have also been provided to illustrate our theoretical results. <\/jats:p>","DOI":"10.1142\/s0218127417502054","type":"journal-article","created":{"date-parts":[[2018,1,3]],"date-time":"2018-01-03T03:03:43Z","timestamp":1514948623000},"page":"1750205","source":"Crossref","is-referenced-by-count":2,"title":["Exact Torus Knot Periodic Orbits and Homoclinic Orbits in a Class of Three-Dimensional Flows Generated by a Planar Cubic System"],"prefix":"10.1142","volume":"27","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0510-1428","authenticated-orcid":false,"given":"Tonghua","family":"Zhang","sequence":"first","affiliation":[{"name":"Department of Mathematics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia"}]},{"given":"Jibin","family":"Li","sequence":"additional","affiliation":[{"name":"School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P. R. China"},{"name":"Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China"}]}],"member":"219","published-online":{"date-parts":[[2018,1,3]]},"reference":[{"key":"S0218127417502054BIB001","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127402004152"},{"key":"S0218127417502054BIB002","doi-asserted-by":"publisher","DOI":"10.1023\/A:1008353609572"},{"key":"S0218127417502054BIB003","doi-asserted-by":"publisher","DOI":"10.1016\/0040-9383(83)90045-9"},{"key":"S0218127417502054BIB004","doi-asserted-by":"publisher","DOI":"10.1090\/conm\/020\/718132"},{"key":"S0218127417502054BIB005","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9947-1985-0797057-1"},{"key":"S0218127417502054BIB006","doi-asserted-by":"publisher","DOI":"10.1023\/A:1008367531379"},{"key":"S0218127417502054BIB007","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127496000448"},{"key":"S0218127417502054BIB008","doi-asserted-by":"publisher","DOI":"10.1007\/BFb0093387"},{"key":"S0218127417502054BIB009","doi-asserted-by":"publisher","DOI":"10.1016\/S0960-0779(97)00094-5"},{"key":"S0218127417502054BIB010","doi-asserted-by":"publisher","DOI":"10.1088\/0951-7715\/11\/4\/021"},{"key":"S0218127417502054BIB011","doi-asserted-by":"publisher","DOI":"10.1007\/BF00250717"},{"key":"S0218127417502054BIB012","doi-asserted-by":"publisher","DOI":"10.1016\/0167-2789(86)90076-X"},{"key":"S0218127417502054BIB013","doi-asserted-by":"publisher","DOI":"10.1016\/0167-2789(89)90026-2"},{"key":"S0218127417502054BIB014","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127415500583"},{"key":"S0218127417502054BIB015","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127411029896"},{"key":"S0218127417502054BIB016","doi-asserted-by":"publisher","DOI":"10.2307\/2321909"},{"key":"S0218127417502054BIB017","first-page":"994","volume":"17","author":"Rozet I.","year":"1981","journal-title":"Diff. Eqs."},{"key":"S0218127417502054BIB018","doi-asserted-by":"publisher","DOI":"10.1142\/S0218216594000083"},{"key":"S0218127417502054BIB019","doi-asserted-by":"publisher","DOI":"10.1016\/S0096-3003(02)00264-3"},{"key":"S0218127417502054BIB020","doi-asserted-by":"publisher","DOI":"10.1007\/BF02684770"},{"key":"S0218127417502054BIB021","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2003.12.061"},{"key":"S0218127417502054BIB022","doi-asserted-by":"publisher","DOI":"10.1007\/s11071-013-1047-9"},{"key":"S0218127417502054BIB023","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2003.08.002"}],"container-title":["International Journal of Bifurcation and Chaos"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0218127417502054","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,20]],"date-time":"2019-09-20T09:38:51Z","timestamp":1568972331000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S0218127417502054"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12,15]]},"references-count":23,"journal-issue":{"issue":"13","published-online":{"date-parts":[[2018,1,3]]},"published-print":{"date-parts":[[2017,12,15]]}},"alternative-id":["10.1142\/S0218127417502054"],"URL":"https:\/\/doi.org\/10.1142\/s0218127417502054","relation":{},"ISSN":["0218-1274","1793-6551"],"issn-type":[{"type":"print","value":"0218-1274"},{"type":"electronic","value":"1793-6551"}],"subject":[],"published":{"date-parts":[[2017,12,15]]}}}