{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,19]],"date-time":"2024-06-19T11:59:43Z","timestamp":1718798383560},"reference-count":10,"publisher":"World Scientific Pub Co Pte Lt","issue":"08","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Bifurcation Chaos"],"published-print":{"date-parts":[[2006,8]]},"abstract":"Using the method of planar dynamical systems to a higher order wave equations of KdV type, the existence of smooth and nonsmooth solitary wave, kink wave and uncountably infinite many periodic wave solutions is proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some spatial conditions, the exact explicit parametric representations of solitary wave solutions are determined.<\/jats:p>","DOI":"10.1142\/s0218127406016033","type":"journal-article","created":{"date-parts":[[2006,11,1]],"date-time":"2006-11-01T12:14:53Z","timestamp":1162383293000},"page":"2235-2260","source":"Crossref","is-referenced-by-count":41,"title":["TRAVELING WAVES FOR AN INTEGRABLE HIGHER ORDER KDV TYPE WAVE EQUATIONS"],"prefix":"10.1142","volume":"16","author":[{"given":"JIBIN","family":"LI","sequence":"first","affiliation":[{"name":"Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China"},{"name":"School of Science, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China"}]},{"given":"JIANHONG","family":"WU","sequence":"additional","affiliation":[{"name":"Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada"}]},{"given":"HUAIPING","family":"ZHU","sequence":"additional","affiliation":[{"name":"Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada"}]}],"member":"219","published-online":{"date-parts":[[2011,11,20]]},"reference":[{"key":"rf1","volume-title":"Method of Bifurcation Theory","author":"Chow S. N.","year":"1981"},{"key":"rf2","doi-asserted-by":"publisher","DOI":"10.1016\/0167-2789(95)00133-O"},{"key":"rf3","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-1140-2"},{"key":"rf4","doi-asserted-by":"publisher","DOI":"10.1016\/S0307-904X(00)00031-7"},{"key":"rf5","doi-asserted-by":"publisher","DOI":"10.1142\/S0252959902000365"},{"key":"rf6","doi-asserted-by":"crossref","first-page":"419","DOI":"10.3934\/dcds.1997.3.419","volume":"3","author":"Li Y. A.","journal-title":"Discr. Contin. Dyn. Syst."},{"key":"rf7","doi-asserted-by":"crossref","first-page":"159","DOI":"10.3934\/dcds.1998.4.159","volume":"4","author":"Li Y. A.","journal-title":"Discr. Contin. Dyn. Syst."},{"key":"rf8","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4684-0392-3"},{"key":"rf9","doi-asserted-by":"publisher","DOI":"10.1063\/1.1514387"},{"key":"rf10","doi-asserted-by":"publisher","DOI":"10.1016\/S0960-0779(01)00211-9"}],"container-title":["International Journal of Bifurcation and Chaos"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0218127406016033","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,4,18]],"date-time":"2020-04-18T21:15:31Z","timestamp":1587244531000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S0218127406016033"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,8]]},"references-count":10,"journal-issue":{"issue":"08","published-online":{"date-parts":[[2011,11,20]]},"published-print":{"date-parts":[[2006,8]]}},"alternative-id":["10.1142\/S0218127406016033"],"URL":"https:\/\/doi.org\/10.1142\/s0218127406016033","relation":{},"ISSN":["0218-1274","1793-6551"],"issn-type":[{"value":"0218-1274","type":"print"},{"value":"1793-6551","type":"electronic"}],"subject":[],"published":{"date-parts":[[2006,8]]}}}