{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,3]],"date-time":"2024-05-03T17:55:51Z","timestamp":1714758951238},"reference-count":12,"publisher":"World Scientific Pub Co Pte Lt","issue":"03","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Bifurcation Chaos"],"published-print":{"date-parts":[[2006,3]]},"abstract":" In this paper, based on a generalized Lyapunov function, a simple proof is given to improve the estimation of globally attractive and positive invariant set of the Lorenz system. In particular, a new estimation is derived for the variable x. On the globally attractive set, the Lorenz system satisfies Lipschitz condition, which is very useful in the study of chaos control and chaos synchronization. Applications are presented for globally, exponentially tracking periodic solutions, stabilizing equilibrium points and synchronizing two Lorenz systems. <\/jats:p>","DOI":"10.1142\/s0218127406015143","type":"journal-article","created":{"date-parts":[[2006,5,23]],"date-time":"2006-05-23T11:19:24Z","timestamp":1148383164000},"page":"757-764","source":"Crossref","is-referenced-by-count":37,"title":["GLOBALLY ATTRACTIVE AND POSITIVE INVARIANT SET OF THE LORENZ SYSTEM"],"prefix":"10.1142","volume":"16","author":[{"given":"PEI","family":"YU","sequence":"first","affiliation":[{"name":"Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7, Canada"}]},{"given":"XIAOXIN","family":"LIAO","sequence":"additional","affiliation":[{"name":"Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China"}]}],"member":"219","published-online":{"date-parts":[[2011,11,20]]},"reference":[{"key":"rf1","doi-asserted-by":"publisher","DOI":"10.1063\/1.166500"},{"key":"rf2","volume-title":"Dynamical Analysis, Control and Synchronization of Lorenz Families","author":"Chen G. R.","year":"2003"},{"key":"rf3","doi-asserted-by":"publisher","DOI":"10.1002\/zamm.19870671215"},{"key":"rf4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-322-91271-8"},{"key":"rf5","first-page":"19","volume":"65","author":"Leonov G.","journal-title":"J. Appl. Math."},{"key":"rf6","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2004.05.021"},{"key":"rf7","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-017-0608-7"},{"key":"rf8","first-page":"454","volume":"43","author":"Liao X. X.","journal-title":"Int. J. Syst. Sci."},{"key":"rf9","doi-asserted-by":"publisher","DOI":"10.1142\/S0218127405014350"},{"key":"rf10","doi-asserted-by":"publisher","DOI":"10.1175\/1520-0469(1963)020<0130:DNF>2.0.CO;2"},{"key":"rf11","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.64.821"},{"key":"rf12","doi-asserted-by":"publisher","DOI":"10.1038\/35023206"}],"container-title":["International Journal of Bifurcation and Chaos"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S0218127406015143","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,7]],"date-time":"2019-08-07T00:10:23Z","timestamp":1565136623000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S0218127406015143"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,3]]},"references-count":12,"journal-issue":{"issue":"03","published-online":{"date-parts":[[2011,11,20]]},"published-print":{"date-parts":[[2006,3]]}},"alternative-id":["10.1142\/S0218127406015143"],"URL":"https:\/\/doi.org\/10.1142\/s0218127406015143","relation":{},"ISSN":["0218-1274","1793-6551"],"issn-type":[{"value":"0218-1274","type":"print"},{"value":"1793-6551","type":"electronic"}],"subject":[],"published":{"date-parts":[[2006,3]]}}}