{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:22:28Z","timestamp":1732040548680},"reference-count":48,"publisher":"World Scientific Pub Co Pte Lt","issue":"08","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Int. J. Neur. Syst."],"published-print":{"date-parts":[[2021,8]]},"abstract":" Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset. <\/jats:p>","DOI":"10.1142\/s012906572150026x","type":"journal-article","created":{"date-parts":[[2021,5,27]],"date-time":"2021-05-27T07:26:22Z","timestamp":1622100382000},"page":"2150026","source":"Crossref","is-referenced-by-count":67,"title":["Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning"],"prefix":"10.1142","volume":"31","author":[{"given":"Mehmet Akif","family":"Ozdemir","sequence":"first","affiliation":[{"name":"Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey"}]},{"given":"Ozlem Karabiber","family":"Cura","sequence":"additional","affiliation":[{"name":"Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey"}]},{"given":"Aydin","family":"Akan","sequence":"additional","affiliation":[{"name":"Department of Electrical and Electronics Eng., Izmir University of Economics, Balcova 35330, Izmir, Turkey"}]}],"member":"219","published-online":{"date-parts":[[2021,5,26]]},"reference":[{"key":"S012906572150026XBIB001","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2006.886855"},{"key":"S012906572150026XBIB002","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2017.09.017"},{"key":"S012906572150026XBIB003","doi-asserted-by":"publisher","DOI":"10.1016\/S0165-0270(02)00340-0"},{"key":"S012906572150026XBIB004","doi-asserted-by":"publisher","DOI":"10.1016\/j.jneumeth.2015.01.015"},{"key":"S012906572150026XBIB005","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2011.07.007"},{"key":"S012906572150026XBIB006","doi-asserted-by":"publisher","DOI":"10.1177\/1550059417744890"},{"key":"S012906572150026XBIB007","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2017.07.022"},{"issue":"1","key":"S012906572150026XBIB008","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12938-019-0745-z","volume":"19","author":"Cura O. K.","year":"2020","journal-title":"BioMed. Eng. OnLine"},{"key":"S012906572150026XBIB009","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2017.07.010"},{"key":"S012906572150026XBIB010","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2014.08.010"},{"key":"S012906572150026XBIB011","doi-asserted-by":"publisher","DOI":"10.1016\/j.bbe.2018.10.006"},{"key":"S012906572150026XBIB012","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2018.06.018"},{"key":"S012906572150026XBIB013","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2014.6854733"},{"key":"S012906572150026XBIB014","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2007.891945"},{"key":"S012906572150026XBIB015","doi-asserted-by":"publisher","DOI":"10.1155\/2007\/80510"},{"key":"S012906572150026XBIB016","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2017.03.023"},{"key":"S012906572150026XBIB017","doi-asserted-by":"publisher","DOI":"10.1142\/S012906571850003X"},{"issue":"3","key":"S012906572150026XBIB018","doi-asserted-by":"crossref","first-page":"e0173138","DOI":"10.1371\/journal.pone.0173138","volume":"12","author":"Chen D.","year":"2017","journal-title":"PloS ONE"},{"key":"S012906572150026XBIB019","author":"Cura O. K.","year":"2020","journal-title":"Int. J. Neural Syst."},{"key":"S012906572150026XBIB020","doi-asserted-by":"publisher","DOI":"10.1016\/j.seizure.2017.05.018"},{"key":"S012906572150026XBIB021","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065718500119"},{"key":"S012906572150026XBIB022","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065718500600"},{"key":"S012906572150026XBIB023","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065719500230"},{"key":"S012906572150026XBIB024","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065720500197"},{"key":"S012906572150026XBIB025","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065720500306"},{"key":"S012906572150026XBIB026","doi-asserted-by":"publisher","DOI":"10.1142\/S0129065719500242"},{"key":"S012906572150026XBIB027","first-page":"178","volume-title":"Proc. st Machine Learning for Healthcare Conf.","volume":"56","author":"Thodoroff P."},{"key":"S012906572150026XBIB028","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.103757"},{"key":"S012906572150026XBIB029","doi-asserted-by":"publisher","DOI":"10.1159\/000512985"},{"key":"S012906572150026XBIB030","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2017.2696503"},{"key":"S012906572150026XBIB031","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2014.6853609"},{"key":"S012906572150026XBIB032","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"S012906572150026XBIB033","doi-asserted-by":"publisher","DOI":"10.1006\/jsvi.1996.0072"},{"key":"S012906572150026XBIB034","doi-asserted-by":"publisher","DOI":"10.1016\/j.bbe.2020.01.010"},{"key":"S012906572150026XBIB035","doi-asserted-by":"publisher","DOI":"10.1155\/2020\/7902072"},{"key":"S012906572150026XBIB036","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-70096-0_84"},{"key":"S012906572150026XBIB038","doi-asserted-by":"publisher","DOI":"10.1515\/bmt-2019-0306"},{"key":"S012906572150026XBIB039","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3010715"},{"key":"S012906572150026XBIB040","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2018.05.019"},{"key":"S012906572150026XBIB041","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2020.03.004"},{"issue":"6","key":"S012906572150026XBIB042","first-page":"47","volume":"12","author":"Yuan Y.","year":"2018","journal-title":"BMC Syst. Biol."},{"key":"S012906572150026XBIB043","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.10.108"},{"key":"S012906572150026XBIB044","doi-asserted-by":"publisher","DOI":"10.1145\/3241056"},{"key":"S012906572150026XBIB045","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2019.04.028"},{"key":"S012906572150026XBIB046","doi-asserted-by":"publisher","DOI":"10.3389\/fninf.2018.00095"},{"key":"S012906572150026XBIB047","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2955285"},{"key":"S012906572150026XBIB048","doi-asserted-by":"publisher","DOI":"10.1109\/GlobalSIP.2018.8646505"},{"key":"S012906572150026XBIB049","first-page":"1210","volume-title":"th European Signal Processing Conf. (EUSIPCO)","author":"Cura O. K.","year":"2021"}],"container-title":["International Journal of Neural Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.worldscientific.com\/doi\/pdf\/10.1142\/S012906572150026X","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,22]],"date-time":"2021-08-22T09:25:53Z","timestamp":1629624353000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.worldscientific.com\/doi\/abs\/10.1142\/S012906572150026X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,26]]},"references-count":48,"journal-issue":{"issue":"08","published-print":{"date-parts":[[2021,8]]}},"alternative-id":["10.1142\/S012906572150026X"],"URL":"https:\/\/doi.org\/10.1142\/s012906572150026x","relation":{},"ISSN":["0129-0657","1793-6462"],"issn-type":[{"value":"0129-0657","type":"print"},{"value":"1793-6462","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,5,26]]}}}