{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T17:34:12Z","timestamp":1730309652052,"version":"3.28.0"},"reference-count":22,"publisher":"SPIE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,2,27]]},"DOI":"10.1117\/12.2293890","type":"proceedings-article","created":{"date-parts":[[2018,2,27]],"date-time":"2018-02-27T18:08:09Z","timestamp":1519754889000},"page":"100","source":"Crossref","is-referenced-by-count":2,"title":["Expert identification of visual primitives used by CNNs during mammogram classification"],"prefix":"10.1117","author":[{"given":"Scott","family":"Hsieh","sequence":"first","affiliation":[]},{"given":"Constance D.","family":"Lehman","sequence":"first","affiliation":[]},{"given":"Vandana","family":"Dialani","sequence":"first","affiliation":[]},{"given":"Bolei","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Diondra","family":"Peck","sequence":"first","affiliation":[]},{"given":"Genevieve","family":"Patterson","sequence":"first","affiliation":[]},{"given":"Lester","family":"Mackey","sequence":"first","affiliation":[]},{"given":"Vasilis","family":"Syrgkanis","sequence":"first","affiliation":[]},{"given":"Jimmy","family":"Wu","sequence":"first","affiliation":[]}],"member":"189","reference":[{"key":"c1","first-page":"1026","article-title":"Delving deep into rectifiers: Surpassing human-level performance on imagenet classification","author":"He","year":"2015"},{"key":"c2","doi-asserted-by":"publisher","DOI":"10.1038\/nature21056"},{"article-title":"Object detectors emerge in deep scene cnns","year":"2015","author":"Bolei","key":"c3"},{"key":"c4","doi-asserted-by":"crossref","DOI":"10.1109\/CVPR.2015.7298594","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"article-title":"Deep residual learning for image recognition","year":"2015","author":"He","key":"c5"},{"key":"c6","first-page":"5987","article-title":"Aggregated residual transformations for deep neural networks","author":"Xie","year":"2017"},{"key":"c7","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMoa066099"},{"key":"c8","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2015.2414934"},{"article-title":"Digital mammography dream challenge","year":"2016","author":"Bionetworks","key":"c9"},{"key":"c10","first-page":"212","article-title":"The digital database for screening mammography","author":"Heath","year":"2000"},{"article-title":"Data system (bi-rads)","year":"1998","author":"Reporting","key":"c11"},{"key":"c12","doi-asserted-by":"crossref","DOI":"10.1109\/CVPR.2017.354","article-title":"Network dissection: Quantifying interpretability of deep visual representations","author":"Bau","year":"2017"},{"key":"c13","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"article-title":"Pytorch","year":"2017","author":"Paszke","key":"c14"},{"key":"c15","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"article-title":"Very deep convolutional networks for large-scale image recognition","year":"2014","author":"Simonyan","key":"c16"},{"article-title":"Breast mass classification from mammograms using deep convolutional neural networks","year":"2016","author":"L\u00e9vy","key":"c17"},{"key":"c18","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.2533082308"},{"key":"c19","doi-asserted-by":"publisher","DOI":"10.1148\/radiology.211.3.r99jn31845"},{"key":"c20","doi-asserted-by":"publisher","DOI":"10.1093\/oxfordjournals.epirev.a036105"},{"key":"c21","first-page":"798","article-title":"Automatic classification of mammographic parenchymal patterns: A statistical approach","volume":"1","author":"Petroudi","year":"2003"},{"key":"c22","doi-asserted-by":"publisher","DOI":"10.1158\/1055-9965.EPI-06-0034"}],"event":{"name":"Computer-Aided Diagnosis","start":{"date-parts":[[2018,2,10]]},"location":"Houston, United States","end":{"date-parts":[[2018,2,15]]}},"container-title":["Medical Imaging 2018: Computer-Aided Diagnosis"],"original-title":[],"deposited":{"date-parts":[[2018,5,23]],"date-time":"2018-05-23T18:12:40Z","timestamp":1527099160000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.spiedigitallibrary.org\/conference-proceedings-of-spie\/10575\/2293890\/Expert-identification-of-visual-primitives-used-by-CNNs-during-mammogram\/10.1117\/12.2293890.full"}},"subtitle":[],"editor":[{"given":"Kensaku","family":"Mori","sequence":"first","affiliation":[]},{"given":"Nicholas","family":"Petrick","sequence":"first","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2018,2,27]]},"references-count":22,"URL":"https:\/\/doi.org\/10.1117\/12.2293890","relation":{},"subject":[],"published":{"date-parts":[[2018,2,27]]}}}