{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T09:56:51Z","timestamp":1742378211882},"reference-count":52,"publisher":"SPIE-Intl Soc Optical Eng","issue":"05","funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773104"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Electron. Imag."],"published-print":{"date-parts":[[2019,10,14]]},"DOI":"10.1117\/1.jei.28.5.053018","type":"journal-article","created":{"date-parts":[[2019,10,14]],"date-time":"2019-10-14T16:00:59Z","timestamp":1571068859000},"page":"1","source":"Crossref","is-referenced-by-count":3,"title":["Aluminum alloy microstructural segmentation in micrograph with hierarchical parameter transfer learning method"],"prefix":"10.1117","volume":"28","author":[{"given":"Dali","family":"Chen","sequence":"first","affiliation":[{"name":"Northeastern University, State Key Laboratory of Synthetical Automation for Process Industries, Shen"}]},{"given":"Pengyuan","family":"Zhang","sequence":"additional","affiliation":[{"name":"Northeastern University, State Key Laboratory of Synthetical Automation for Process Industries, Shen"}]},{"given":"Shixin","family":"Liu","sequence":"additional","affiliation":[{"name":"Northeastern University, State Key Laboratory of Synthetical Automation for Process Industries, Shen"}]},{"given":"Yangquan","family":"Chen","sequence":"additional","affiliation":[{"name":"University of California, School of Engineering, Merced, California"}]},{"given":"Wei","family":"Zhao","sequence":"additional","affiliation":[{"name":"Shandong Nanshan Aluminum Industry Co. Ltd., Yantai"}]}],"member":"189","reference":[{"key":"r1","doi-asserted-by":"publisher","DOI":"10.1016\/0376-0421(95)00004-6"},{"key":"r2","doi-asserted-by":"publisher","DOI":"10.1038\/nature23894"},{"key":"r3","doi-asserted-by":"publisher","DOI":"10.1038\/nature01638"},{"key":"r4","doi-asserted-by":"publisher","DOI":"10.1016\/j.matdes.2017.12.049"},{"key":"r5","doi-asserted-by":"publisher","DOI":"10.1088\/2051-672X\/aab73b"},{"key":"r6","doi-asserted-by":"publisher","DOI":"10.1016\/S0924-0136(01)01057-3"},{"key":"r7","doi-asserted-by":"publisher","DOI":"10.4028\/www.scientific.net\/AMM.152-154"},{"key":"r8","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2014.7025989"},{"key":"r9","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2017.8296298"},{"key":"r10","doi-asserted-by":"publisher","DOI":"10.1109\/ICISCE.2015.121"},{"key":"r11","doi-asserted-by":"publisher","DOI":"10.1016\/j.ndteint.2009.05.002"},{"key":"r12","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-20438-6"},{"key":"r13","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2012.07.062"},{"key":"r14","doi-asserted-by":"publisher","DOI":"10.1002\/jemt.v74.1"},{"key":"r15","doi-asserted-by":"publisher","DOI":"10.1016\/j.commatsci.2015.08.011"},{"key":"r16","doi-asserted-by":"publisher","DOI":"10.1016\/j.commatsci.2018.03.004"},{"key":"r17","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"r18","doi-asserted-by":"publisher","DOI":"10.1142\/S1793351X16500045"},{"key":"r19","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"r20","doi-asserted-by":"publisher","DOI":"10.1145\/3098997"},{"key":"r21","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.231"},{"key":"r22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"r23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.472"},{"key":"r24","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01234-2"},{"key":"r25","doi-asserted-by":"publisher","DOI":"10.1109\/29.21701"},{"key":"r26","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2012.2205597"},{"key":"r27","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2013.6638947"},{"key":"r28","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"r29","article-title":"Generating sequences with recurrent neural networks","author":"Graves","year":"2013"},{"key":"r30","doi-asserted-by":"publisher","DOI":"10.1021\/ci500747n"},{"key":"r31","doi-asserted-by":"publisher","DOI":"10.1038\/nature12346"},{"key":"r32","doi-asserted-by":"publisher","DOI":"10.1126\/science.1254806"},{"key":"r33","doi-asserted-by":"publisher","DOI":"10.1126\/science.aat2663"},{"key":"r34","doi-asserted-by":"publisher","DOI":"10.1016\/j.commatsci.2016.05.034"},{"key":"r35","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.96.052111"},{"key":"r36","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-20037-5"},{"key":"r37","doi-asserted-by":"publisher","DOI":"10.3390\/sym10040107"},{"key":"r38","doi-asserted-by":"publisher","DOI":"10.1117\/1.JEI.28.3.033035"},{"key":"r39","article-title":"Spring research presentation: a theoretical foundation for inductive transfer","author":"West","year":"2007"},{"key":"r40","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2009.191"},{"key":"r41","first-page":"270","article-title":"A survey on deep transfer learning","author":"Tan","year":"2018"},{"key":"r42","first-page":"3320","article-title":"How transferable are features in deep neural networks?","author":"Yosinski","year":"2014"},{"key":"r43","first-page":"2365","article-title":"Understanding how feature structure transfers in transfer learning","author":"Liu","year":"2017"},{"key":"r44","doi-asserted-by":"crossref","DOI":"10.1109\/CVPR.2018.00391","article-title":"Taskonomy: disentangling task transfer learning","author":"Zamir","year":"2018"},{"key":"r45","article-title":"Deep domain confusion: maximizing for domain invariance","author":"Tzeng","year":"2014"},{"key":"r46","first-page":"97","article-title":"Learning transferable features with deep adaptation networks","author":"Long","year":"2015"},{"key":"r47","article-title":"BERT: pre-training of deep bidirectional transformers for language understanding","author":"Devlin","year":"2018"},{"key":"r48","first-page":"299","article-title":"Transfer learning for text classification","author":"Do","year":"2005"},{"key":"r49","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014"},{"key":"r50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"r51","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.1979.4310076"},{"key":"r52","first-page":"185","article-title":"Fast training of support vector machines using sequential minimal optimization","author":"Platt","year":"1999"}],"container-title":["Journal of Electronic Imaging"],"original-title":[],"link":[{"URL":"https:\/\/www.spiedigitallibrary.org\/journalArticle\/Download?urlId=10.1117%2F1.JEI.28.5.053018","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T22:14:22Z","timestamp":1706134462000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.spiedigitallibrary.org\/journals\/journal-of-electronic-imaging\/volume-28\/issue-05\/053018\/Aluminum-alloy-microstructural-segmentation-in-micrograph-with-hierarchical-parameter-transfer\/10.1117\/1.JEI.28.5.053018.full"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,10,14]]},"references-count":52,"journal-issue":{"issue":"05"},"URL":"https:\/\/doi.org\/10.1117\/1.jei.28.5.053018","relation":{},"ISSN":["1017-9909"],"issn-type":[{"value":"1017-9909","type":"print"}],"subject":[],"published":{"date-parts":[[2019,10,14]]}}}