{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T15:53:27Z","timestamp":1722009207063},"reference-count":100,"publisher":"Wiley","issue":"4","license":[{"start":{"date-parts":[[2020,10,8]],"date-time":"2020-10-08T00:00:00Z","timestamp":1602115200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Computer aided Civil Eng"],"published-print":{"date-parts":[[2021,4]]},"abstract":"Abstract<\/jats:title>The objective of this study is to create and test a hybrid deep learning (DL) model, FastGRNN\u2010FCN (fast, accurate, stable and tiny gated recurrent neural network\u2010fully convolutional network), for urban flood prediction and situation awareness using channel network sensors data. The study used Harris County, Texas, as the testbed, and obtained channel sensor data from three historical flood events (e.g., 2016 Tax Day Flood, 2016 Memorial Day Flood, and 2017 Hurricane Harvey Flood) for training and validating the hybrid DL model. The flood data are divided into a multivariate time series and used as the model input. Each input comprises nine variables, including information of the studied channel sensor and its predecessor and successor sensors in the channel network. Precision\u2010recall curve and F\u2010measure are used to identify the optimal set of model parameters. The optimal model with a weight of 1 and a critical threshold of 0.59 are obtained through 100 iterations based on examining different weights and thresholds. The test accuracy and F\u2010measure eventually reach 97.8% and 0.792, respectively. The model is then tested in predicting the 2019 Imelda Flood in Houston and the results show an excellent match with the empirical flood. The results show that the model enables accurate prediction of the spatial\u2013temporal flood propagation and recession and provides emergency response officials with a predictive flood warning tool for prioritizing the flood response and resource allocation\u00a0strategies.<\/jats:p>","DOI":"10.1111\/mice.12629","type":"journal-article","created":{"date-parts":[[2020,10,8]],"date-time":"2020-10-08T12:15:38Z","timestamp":1602159338000},"page":"402-420","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":32,"title":["A hybrid deep learning model for predictive flood warning and situation awareness using channel network sensors data"],"prefix":"10.1111","volume":"36","author":[{"given":"Shangjia","family":"Dong","sequence":"first","affiliation":[{"name":"Department of Civil and Environmental Engineering University of Delaware, Newark, DE USA"}]},{"given":"Tianbo","family":"Yu","sequence":"additional","affiliation":[{"name":"Zachry Department of Civil and Environmental Engineering Texas A&M University, College Station, TX USA"}]},{"given":"Hamed","family":"Farahmand","sequence":"additional","affiliation":[{"name":"Zachry Department of Civil and Environmental Engineering Texas A&M University, College Station, TX USA"}]},{"given":"Ali","family":"Mostafavi","sequence":"additional","affiliation":[{"name":"Zachry Department of Civil and Environmental Engineering Texas A&M University, College Station, TX USA"}]}],"member":"311","published-online":{"date-parts":[[2020,10,8]]},"reference":[{"key":"e_1_2_9_2_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41558-018-0085-1"},{"key":"e_1_2_9_3_1","doi-asserted-by":"publisher","DOI":"10.3233\/ICA-2010-0345"},{"key":"e_1_2_9_4_1","doi-asserted-by":"publisher","DOI":"10.1088\/1748-9326\/ab6edd"},{"key":"e_1_2_9_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0198-9715(01)00010-2"},{"key":"e_1_2_9_6_1","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)1084-0699(2000)5:2(124)"},{"key":"e_1_2_9_7_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12517"},{"key":"e_1_2_9_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2015.2416723"},{"key":"e_1_2_9_9_1","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)WR.1943-5452.0001087"},{"key":"e_1_2_9_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/SmartTechCon.2017.8358367"},{"key":"e_1_2_9_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-014-0349-y"},{"key":"e_1_2_9_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2010.02.037"},{"key":"e_1_2_9_13_1","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)0733-9496(2003)129:6(458)"},{"key":"e_1_2_9_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.advwatres.2005.03.001"},{"key":"e_1_2_9_15_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12263"},{"key":"e_1_2_9_16_1","doi-asserted-by":"publisher","DOI":"10.1002\/hyp.1015"},{"key":"e_1_2_9_17_1","volume-title":"Flood forecasting using machine learning methods","author":"Chang F.\u2010J.","year":"2019"},{"key":"e_1_2_9_18_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12495"},{"key":"e_1_2_9_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.scitotenv.2019.134979"},{"key":"e_1_2_9_20_1","unstructured":"Cui Z. Chen W. &Chen Y.(2016).Multi\u2010scale convolutional neural networks for time series classification.arXiv preprint arXiv:1603.06995."},{"key":"e_1_2_9_21_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2018.12.002"},{"key":"e_1_2_9_22_1","doi-asserted-by":"publisher","DOI":"10.2166\/nh.2019.090"},{"key":"e_1_2_9_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2018.08.057"},{"key":"e_1_2_9_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compenvurbsys.2019.101443"},{"key":"e_1_2_9_25_1","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)ME.1943-5479.0000839"},{"key":"e_1_2_9_26_1","doi-asserted-by":"publisher","DOI":"10.1098\/rsif.2019.0149"},{"key":"e_1_2_9_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2019.122971"},{"key":"e_1_2_9_28_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12527"},{"key":"e_1_2_9_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.scs.2020.102398"},{"key":"e_1_2_9_30_1","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)ME.1943-5479.0000745"},{"key":"e_1_2_9_31_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12489"},{"key":"e_1_2_9_32_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-019-00619-1"},{"key":"e_1_2_9_33_1","unstructured":"FEMA(2017).2017 Historic disaster response to Hurricane Harvey in Texas. Retrieved fromhttps:\/\/www.fema.gov\/news-release\/2017\/09\/22\/historic-disaster-response-hurricane-harvey-texas"},{"key":"e_1_2_9_34_1","doi-asserted-by":"publisher","DOI":"10.1080\/19942060.2018.1448896"},{"key":"e_1_2_9_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12517-019-4756-7"},{"key":"e_1_2_9_36_1","doi-asserted-by":"publisher","DOI":"10.1080\/19942060.2015.1128358"},{"key":"e_1_2_9_37_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2018.10.053"},{"key":"e_1_2_9_38_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12565"},{"key":"e_1_2_9_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jprocont.2019.12.007"},{"key":"e_1_2_9_40_1","unstructured":"HCFCD(2019).Harris County flood control district Hurricane Harvey. Retrieved fromhttp:\/\/www.hcfcd.org\/Portals\/62\/Harvey\/immediate-flood-report-final-hurricane-harvey-2017.pdf."},{"key":"e_1_2_9_41_1","unstructured":"HCFWS(2019).Harris County flood control district Harris County flood warning system. Retrieved fromhttps:\/\/www.harriscountyfws.org."},{"key":"e_1_2_9_42_1","doi-asserted-by":"publisher","DOI":"10.1002\/9781118646106"},{"key":"e_1_2_9_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.scitotenv.2019.135161"},{"key":"e_1_2_9_44_1","doi-asserted-by":"publisher","DOI":"10.1111\/0885-9507.00142"},{"key":"e_1_2_9_45_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijsrc.2017.10.001"},{"key":"e_1_2_9_46_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12503"},{"key":"e_1_2_9_47_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-04468-2"},{"key":"e_1_2_9_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2017.2779939"},{"key":"e_1_2_9_49_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.04.014"},{"key":"e_1_2_9_50_1","doi-asserted-by":"publisher","DOI":"10.1002\/hyp.8347"},{"key":"e_1_2_9_51_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0022-1694(98)00231-5"},{"key":"e_1_2_9_52_1","doi-asserted-by":"publisher","DOI":"10.1111\/risa.12650"},{"key":"e_1_2_9_53_1","first-page":"9017","article-title":"FastGRNN: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network","volume":"51","author":"Kusupati A.","year":"2018","journal-title":"Advances in Neural Information Processing Systems"},{"key":"e_1_2_9_54_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0224522"},{"key":"e_1_2_9_55_1","doi-asserted-by":"publisher","DOI":"10.1109\/CEC.2016.7743944"},{"key":"e_1_2_9_56_1","unstructured":"Lin M. Chen Q. &Yan S.(2013).Network in network.2nd International Conference on Learning Representations ICLR 2014\u2014Conference Track Proceedings arXiv preprint arXiv:1312.4400."},{"key":"e_1_2_9_57_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-014-0361-2"},{"key":"e_1_2_9_58_1","doi-asserted-by":"publisher","DOI":"10.1002\/(SICI)1099-1085(20000228)14:3<431::AID-HYP947>3.0.CO;2-0"},{"key":"e_1_2_9_59_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2993874"},{"key":"e_1_2_9_60_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2012.12.011"},{"key":"e_1_2_9_61_1","article-title":"Generative adversarial network for road damage detection","author":"Maeda H.","year":"2020","journal-title":"Computer\u2010Aided Civil and Infrastructure Engineering"},{"key":"e_1_2_9_62_1","doi-asserted-by":"publisher","DOI":"10.5194\/nhess-13-53-2013"},{"key":"e_1_2_9_63_1","doi-asserted-by":"publisher","DOI":"10.1109\/IEMCON.2016.7746363"},{"key":"e_1_2_9_64_1","volume-title":"A basin\u2010wide flow forecasting system for real\u2010time flood warning, river control and water management","author":"Moore R.","year":"1990"},{"key":"e_1_2_9_65_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12359"},{"key":"e_1_2_9_66_1","volume-title":"Desktop review of 2D hydraulic modelling packages","author":"N\u00e9elz S.","year":"2009"},{"key":"e_1_2_9_67_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12528"},{"key":"e_1_2_9_68_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12532"},{"key":"e_1_2_9_69_1","doi-asserted-by":"publisher","DOI":"10.1109\/CSPA.2019.8695980"},{"key":"e_1_2_9_70_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2010.06.005"},{"key":"e_1_2_9_71_1","doi-asserted-by":"publisher","DOI":"10.3390\/w11122534"},{"key":"e_1_2_9_72_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2017.2651018"},{"key":"e_1_2_9_73_1","unstructured":"Qian K. Mohamed A. &Claudel C.(2019).Physics informed data driven model for flood prediction: Application of deep learning in prediction of urban flood development.arXiv preprint arXiv:1908.10312."},{"key":"e_1_2_9_74_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.soildyn.2017.05.013"},{"key":"e_1_2_9_75_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2017.2682102"},{"key":"e_1_2_9_76_1","doi-asserted-by":"publisher","DOI":"10.1002\/tal.1400"},{"key":"e_1_2_9_77_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.engstruct.2017.10.070"},{"key":"e_1_2_9_78_1","doi-asserted-by":"publisher","DOI":"10.1029\/2001WR001056"},{"key":"e_1_2_9_79_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12573"},{"key":"e_1_2_9_80_1","first-page":"jwc2019321","article-title":"Flood prediction based on weather parameters using deep learning","author":"Sankaranarayanan S.","year":"2019","journal-title":"Journal of Water and Climate Change"},{"key":"e_1_2_9_81_1","doi-asserted-by":"publisher","DOI":"10.1080\/1573062X.2019.1579347"},{"key":"e_1_2_9_82_1","doi-asserted-by":"crossref","unstructured":"Sit M. &Demir I.(2019).Decentralized flood forecasting using deep neural networks.arXiv preprint arXiv:1902.02308.","DOI":"10.31223\/OSF.IO\/E9XQR"},{"issue":"1","key":"e_1_2_9_83_1","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava N.","year":"2014","journal-title":"The Journal of Machine Learning Research"},{"key":"e_1_2_9_84_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2015.07.019"},{"key":"e_1_2_9_85_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.envsoft.2017.01.006"},{"key":"e_1_2_9_86_1","doi-asserted-by":"publisher","DOI":"10.1111\/0885-9507.00090"},{"key":"e_1_2_9_87_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2010.10.001"},{"key":"e_1_2_9_88_1","first-page":"217","volume-title":"International Conference on Machine Learning","author":"Van Der Maaten L.","year":"2011"},{"key":"e_1_2_9_89_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijdrr.2019.101162"},{"key":"e_1_2_9_90_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12481"},{"key":"e_1_2_9_91_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113216"},{"key":"e_1_2_9_92_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12572"},{"key":"e_1_2_9_93_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966039"},{"key":"e_1_2_9_94_1","doi-asserted-by":"publisher","DOI":"10.1109\/INNOCIT.2017.8319150"},{"key":"e_1_2_9_95_1","unstructured":"Winfree G. D.(2019).The need for resilience: Preparing America's transportation infrastructure for climate change.U.S House of Representatives Committee on Science Space and Technology Subcommittee on Investigations and Oversight."},{"key":"e_1_2_9_96_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2012.05.023"},{"key":"e_1_2_9_97_1","doi-asserted-by":"publisher","DOI":"10.1029\/2019WR025326"},{"key":"e_1_2_9_98_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12558"},{"key":"e_1_2_9_99_1","doi-asserted-by":"publisher","DOI":"10.1098\/rsta.2002.1008"},{"key":"e_1_2_9_100_1","doi-asserted-by":"publisher","DOI":"10.1080\/15732479.2016.1271813"},{"key":"e_1_2_9_101_1","doi-asserted-by":"publisher","DOI":"10.1111\/mice.12485"}],"container-title":["Computer-Aided Civil and Infrastructure Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/mice.12629","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1111\/mice.12629","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/mice.12629","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T04:36:12Z","timestamp":1693542972000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/mice.12629"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,8]]},"references-count":100,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,4]]}},"alternative-id":["10.1111\/mice.12629"],"URL":"https:\/\/doi.org\/10.1111\/mice.12629","archive":["Portico"],"relation":{},"ISSN":["1093-9687","1467-8667"],"issn-type":[{"value":"1093-9687","type":"print"},{"value":"1467-8667","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,10,8]]},"assertion":[{"value":"2020-10-08","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}