{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T08:43:14Z","timestamp":1725612194902},"reference-count":61,"publisher":"Wiley","issue":"2","license":[{"start":{"date-parts":[[2018,5,22]],"date-time":"2018-05-22T00:00:00Z","timestamp":1526947200000},"content-version":"vor","delay-in-days":21,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Computer Graphics Forum"],"published-print":{"date-parts":[[2018,5]]},"abstract":"Abstract<\/jats:title>Despite recent advances in surveying techniques, publicly available Digital Elevation Models (DEMs) of terrains are low\u2010resolution except for selected places on Earth. In this paper we present a new method to turn low\u2010resolution DEMs into plausible and faithful high\u2010resolution terrains. Unlike other approaches for terrain synthesis\/amplification (fractal noise, hydraulic and thermal erosion, multi\u2010resolution dictionaries), we benefit from high\u2010resolution aerial images to produce highly\u2010detailed DEMs mimicking the features of the real terrain. We explore different architectures for Fully Convolutional Neural Networks to learn upsampling patterns for DEMs from detailed training sets (high\u2010resolution DEMs and orthophotos), yielding up to one order of magnitude more resolution. Our comparative results show that our method outperforms competing data amplification approaches in terms of elevation accuracy and terrain plausibility.<\/jats:p>","DOI":"10.1111\/cgf.13345","type":"journal-article","created":{"date-parts":[[2018,6,1]],"date-time":"2018-06-01T00:19:39Z","timestamp":1527812379000},"page":"101-110","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":20,"title":["Terrain Super\u2010resolution through Aerial Imagery and Fully Convolutional Networks"],"prefix":"10.1111","volume":"37","author":[{"given":"O.","family":"Argudo","sequence":"first","affiliation":[{"name":"VirVIG, Computer Science Department, Universitat Politecnica de Catalunya, Jordi Girona 1\u20133, Barcelona, Spain"}]},{"given":"A.","family":"Chica","sequence":"additional","affiliation":[{"name":"VirVIG, Computer Science Department, Universitat Politecnica de Catalunya, Jordi Girona 1\u20133, Barcelona, Spain"}]},{"given":"C.","family":"Andujar","sequence":"additional","affiliation":[{"name":"VirVIG, Computer Science Department, Universitat Politecnica de Catalunya, Jordi Girona 1\u20133, Barcelona, Spain"}]}],"member":"311","published-online":{"date-parts":[[2018,5,22]]},"reference":[{"key":"e_1_2_9_2_2","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-017-1393-6"},{"key":"e_1_2_9_3_2","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12281"},{"key":"e_1_2_9_4_2","unstructured":"BenesB. ForsbachR.: Layered data representation for visual simulation of terrain erosion. InProceedings of the 17th Spring Conference on Computer Graphics(2001) SCCG \u201801 pp. 80\u2013.2"},{"key":"e_1_2_9_5_2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2003.1217602"},{"key":"e_1_2_9_6_2","doi-asserted-by":"publisher","DOI":"10.1002\/cav.77"},{"key":"e_1_2_9_7_2","doi-asserted-by":"crossref","unstructured":"CordonnierG. BraunJ. CaniM.\u2010P. BenesB. GalinE. PeytavieA. Gu\u00e9rinE.: Large scale terrain generation from tectonic uplift and fluvial erosion. InProc. of Eurographics(2016) pp.165\u2013175.2","DOI":"10.1111\/cgf.12820"},{"key":"e_1_2_9_8_2","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073667"},{"key":"e_1_2_9_9_2","doi-asserted-by":"crossref","unstructured":"ChenZ. SunT. QinQ. ZhangH.: DEM densification using SFS with single multi\u2010spectral satellite image. InRemote Sensing for Agriculture Ecosystems and Hydrology XIII(Nov.2011) vol. 8174 ofProceedings of the SPIE.3","DOI":"10.1117\/12.897931"},{"key":"e_1_2_9_10_2","unstructured":"DachsbacherC. BolchT. StammingerM.: Procedural Reproduction of Terrain Textures with Geographic Data. InVision Modeling and Visualization (VMV 2006)(2006) pp.105\u2013112.2"},{"key":"e_1_2_9_11_2","doi-asserted-by":"publisher","DOI":"10.1145\/882262.882267"},{"key":"e_1_2_9_12_2","doi-asserted-by":"crossref","unstructured":"DeussenO. HanrahanP. LintermannB. M\u011bchR. PharrM. PrusinkiewiczP.: Realistic modeling and rendering of plant ecosystems. InProceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques(1998) SIGGRAPH \u201898 pp.275\u2013286.2","DOI":"10.1145\/280814.280898"},{"key":"e_1_2_9_13_2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2439281"},{"key":"e_1_2_9_14_2","unstructured":"DachsbacherC. MeyerM. StammingerM.: Height\u2010field synthesis by non\u2010parametric sampling.Vision Modeling and Visualization 2005(2005) 297\u2013302.2"},{"key":"e_1_2_9_15_2","unstructured":"DachsbacherC. StammingerM.: Rendering procedural terrain by geometry image warping. InProceedings of the Fifteenth Eurographics Conference on Rendering Techniques(Aire\u2010la\u2010Ville Switzerland 2004) EGSR'04 Eurographics Association pp.103\u2013110.2"},{"key":"e_1_2_9_16_2","doi-asserted-by":"crossref","unstructured":"EfrosA. A. FreemanW. T.: Image quilting for texture synthesis and transfer. InProceedings of the 28th annual conference on Computer graphics and interactive techniques(2001) ACM pp.341\u2013346.2","DOI":"10.1145\/383259.383296"},{"key":"e_1_2_9_17_2","doi-asserted-by":"crossref","first-page":"xx","DOI":"10.1016\/B978-155860848-1\/50029-2","volume-title":"Texturing and Modeling (3)","author":"Ebert D. S.","year":"2003"},{"key":"e_1_2_9_18_2","doi-asserted-by":"publisher","DOI":"10.1145\/2766975"},{"key":"e_1_2_9_19_2","doi-asserted-by":"publisher","DOI":"10.1109\/38.988747"},{"key":"e_1_2_9_20_2","doi-asserted-by":"crossref","unstructured":"GlasnerD. BagonS. IraniM.: Super\u2010resolution from a single image. In2009 IEEE 12th International Conference on Computer Vision(2009) pp.349\u2013356.2","DOI":"10.1109\/ICCV.2009.5459271"},{"key":"e_1_2_9_21_2","doi-asserted-by":"publisher","DOI":"10.1145\/3130800.3130804"},{"key":"e_1_2_9_22_2","doi-asserted-by":"crossref","unstructured":"Gu\u00e9rinE. DigneJ. GalinE. PeytavieA.: Sparse representation of terrains for procedural modeling.Computer Graphics Forum (proc. of Eurographics 2016)35 2 (2016) 177\u2013187.2 7 8","DOI":"10.1111\/cgf.12821"},{"key":"e_1_2_9_23_2","unstructured":"GatysL. EckerA. S. BethgeM.: Texture synthesis using convolutional neural networks. InAdvances in Neural Information Processing Systems(2015) pp.262\u2013270.2"},{"key":"e_1_2_9_24_2","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12545"},{"key":"e_1_2_9_25_2","doi-asserted-by":"crossref","unstructured":"GainJ. MaraisP. StrasserW.: Terrain sketching. InProceedings of the 2009 Symposium on Interactive 3D Graphics and Games(2009) I3D \u201809 pp.31\u201338.2","DOI":"10.1145\/1507149.1507155"},{"key":"e_1_2_9_26_2","doi-asserted-by":"publisher","DOI":"10.1145\/1276377.1276382"},{"key":"e_1_2_9_27_2","unstructured":"Institut Cartogr\u00e0fic i Geologic de Catalunya.http:\/\/www.icc.cat\/vissir3. Online; accessed 01 October 2017.3"},{"key":"e_1_2_9_28_2","doi-asserted-by":"crossref","unstructured":"JiaY. ShelhamerE. DonahueJ. KarayevS. LongJ. GirshickR. GuadarramaS. DarrellT.: Caffe: Convolutional architecture for fast feature embedding.arXiv:1408.5093(2014).4 7","DOI":"10.1145\/2647868.2654889"},{"key":"e_1_2_9_29_2","unstructured":"KingmaD. BaJ.: Adam: A method for stochastic optimization.arXiv preprint arXiv:1412.6980(2014).4"},{"key":"e_1_2_9_30_2","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2009.01361.x"},{"key":"e_1_2_9_31_2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2010.25"},{"key":"e_1_2_9_32_2","doi-asserted-by":"crossref","unstructured":"KimJ. LeeJ. K. LeeK. M.: Accurate image super\u2010resolution using very deep convolutional networks. In2016 IEEE Conference on Computer Vision and Pattern Recognition CVPR 2016 Las Vegas NV USA June 27\u201330 2016(2016) pp.1646\u20131654.3","DOI":"10.1109\/CVPR.2016.182"},{"key":"e_1_2_9_33_2","volume-title":"Doing Bayesian Data Analysis","author":"Kruschke J.","year":"2014"},{"key":"e_1_2_9_34_2","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"e_1_2_9_35_2","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1989.1.4.541"},{"key":"e_1_2_9_36_2","unstructured":"LaneB. PrusinkiewiczP.: Generating spatial distributions for multilevel models of plant communities. InProceedings of the Graphics Interface 2002 Conference May 27\u201329 2002 Calgary Alberta Canada(2002) pp.69\u201380.2"},{"key":"e_1_2_9_37_2","doi-asserted-by":"crossref","unstructured":"LongJ. ShelhamerE. DarrellT.: Fully convolutional networks for semantic segmentation. InThe IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(June2015).3 4","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"e_1_2_9_38_2","doi-asserted-by":"crossref","unstructured":"LimB. SonS. KimH. NahS. LeeK. M.: Enhanced deep residual networks for single image super\u2010resolution. InThe IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops(2017) vol.1 p. 3.3","DOI":"10.1109\/CVPRW.2017.151"},{"key":"e_1_2_9_39_2","unstructured":"LedigC. TheisL. Husz\u00e1rF. CaballeroJ. CunninghamA. AcostaA. AitkenA. TejaniA. TotzJ. WangZ. ET AL.: Photo\u2010realistic single image super\u2010resolution using a generative adversarial network.arXiv:1609.04802(2016).3"},{"key":"e_1_2_9_40_2","first-page":"71","volume-title":"Patch Based Synthesis for Single Depth Image Super\u2010Resolution","author":"Mac Aodha O.","year":"2012"},{"key":"e_1_2_9_41_2","doi-asserted-by":"publisher","DOI":"10.1145\/74334.74337"},{"key":"e_1_2_9_42_2","doi-asserted-by":"crossref","unstructured":"M\u011bchR. PrusinkiewiczP.: Visual models of plants interacting with their environment. InProceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques(1996) SIGGRAPH \u201896 pp.397\u2013410.2","DOI":"10.1145\/237170.237279"},{"key":"e_1_2_9_43_2","unstructured":"NairV. HintonG. E.: Rectified linear units improve restricted boltzmann machines. InProceedings of the 27th International Conference on International Conference on Machine Learning(2010) ICML'10 pp.807\u2013814.2"},{"key":"e_1_2_9_44_2","unstructured":"NataliM. LidalE. M. ParulekJ. ViolaI. PatelD.: Modeling terrains and subsurface geology. InEuroGraphics 2013 State of the Art Reports (STARs)(2013) pp.155\u2013173.2"},{"key":"e_1_2_9_45_2","unstructured":"OpenDEM.http:\/\/opendem.info\/opendemsearcher.html. Online; accessed 01 October 2017.1"},{"key":"e_1_2_9_46_2","doi-asserted-by":"publisher","DOI":"10.1145\/325165.325247"},{"key":"e_1_2_9_47_2","doi-asserted-by":"crossref","unstructured":"RajabiM. A. BlaisJ. A. R.: Densification of digital terrain elevations using shape from shading with single satellite imagery. InProceedings of the International Conference on Computational Science\u2010Part II(2001) ICCS \u201801 pp.3\u201312.3","DOI":"10.1007\/3-540-45718-6_1"},{"key":"e_1_2_9_48_2","doi-asserted-by":"crossref","unstructured":"RenH. El\u2010KhamyM. LeeJ.: Image Super Resolution Based on Fusing Multiple Convolution Neural Networks. In2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)(2017) pp.1050\u20131057.3","DOI":"10.1109\/CVPRW.2017.142"},{"key":"e_1_2_9_49_2","first-page":"114","volume-title":"Point Evaluation of Multi\u2010Variable Random Fractals","author":"Saupe D.","year":"1989"},{"key":"e_1_2_9_50_2","unstructured":"S\u00fcdtiroler B\u00fcrgernetz GeoKatalog.http:\/\/geokatalog.buergernetz.bz.it\/geokatalog. Online; accessed 01 October 2017.3"},{"key":"e_1_2_9_51_2","unstructured":"SchneiderJ. BoldteT. WestermannR.: Real\u2010time editing synthesis and rendering of infinite landscapes on GPUs. InVision Modeling and Visualization 2006(2006)."},{"key":"e_1_2_9_52_2","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12276"},{"key":"e_1_2_9_53_2","doi-asserted-by":"crossref","unstructured":"TimofteR. AgustssonE. GoolL. V. YangM. H. ZhangL.: NTIRE 2017 Challenge on Single Image Super\u2010Resolution: Methods and Results. In2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)(2017) pp.1110\u20131121.2","DOI":"10.1109\/CVPRW.2017.150"},{"key":"e_1_2_9_54_2","doi-asserted-by":"crossref","unstructured":"TimofteR. DeV. GoolL. V.: Anchored neighborhood regression for fast example\u2010based super\u2010resolution. In2013 IEEE International Conference on Computer Vision(2013) pp.1920\u20131927.2","DOI":"10.1109\/ICCV.2013.241"},{"key":"e_1_2_9_55_2","unstructured":"USGS 3D Elevation Program (3DEP).https:\/\/www.sciencebase.gov\/catalog\/item\/4f70a58ce4b058caae3f8ddb. Online; accessed 01 October 2017.1"},{"key":"e_1_2_9_56_2","doi-asserted-by":"crossref","unstructured":"WeiL.\u2010Y. LevoyM.: Fast texture synthesis using tree\u2010structured vector quantization. InProceedings of the 27th annual conference on Computer graphics and interactive techniques(2000) pp.479\u2013488.2","DOI":"10.1145\/344779.345009"},{"key":"e_1_2_9_57_2","unstructured":"WeiL.\u2010Y. LevoyM.: Order\u2010independent texture synthesis.arXiv preprint arXiv:1406.7338(2014).2"},{"key":"e_1_2_9_58_2","doi-asserted-by":"crossref","unstructured":"YangJ. LinZ. CohenS.: Fast image super\u2010resolution based on in\u2010place example regression. InProceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition(2013) CVPR \u201813 pp.1059\u20131066.2","DOI":"10.1109\/CVPR.2013.141"},{"key":"e_1_2_9_59_2","first-page":"372","volume-title":"Single\u2010Image Super\u2010Resolution: A Benchmark","author":"Yang C.\u2010Y.","year":"2014"},{"key":"e_1_2_9_60_2","doi-asserted-by":"crossref","unstructured":"YangQ. YangR. DavisJ. NisterD.: Spatial\u2010Depth Super Resolution for Range Images. In2007 IEEE Conference on Computer Vision and Pattern Recognition(2007) pp.1\u20138.2 7 8","DOI":"10.1109\/CVPR.2007.383211"},{"key":"e_1_2_9_61_2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2007.1027"},{"key":"e_1_2_9_62_2","doi-asserted-by":"publisher","DOI":"10.1109\/34.784284"}],"container-title":["Computer Graphics Forum"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.wiley.com\/onlinelibrary\/tdm\/v1\/articles\/10.1111%2Fcgf.13345","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1111\/cgf.13345","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,23]],"date-time":"2023-09-23T16:40:44Z","timestamp":1695487244000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/cgf.13345"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,5]]},"references-count":61,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2018,5]]}},"alternative-id":["10.1111\/cgf.13345"],"URL":"https:\/\/doi.org\/10.1111\/cgf.13345","archive":["Portico"],"relation":{},"ISSN":["0167-7055","1467-8659"],"issn-type":[{"value":"0167-7055","type":"print"},{"value":"1467-8659","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,5]]},"assertion":[{"value":"2018-05-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}