{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T20:12:59Z","timestamp":1725739979372},"reference-count":43,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1109\/wacv51458.2022.00111","type":"proceedings-article","created":{"date-parts":[[2022,2,15]],"date-time":"2022-02-15T20:56:28Z","timestamp":1644958588000},"page":"1040-1049","source":"Crossref","is-referenced-by-count":3,"title":["Few-shot Weakly-Supervised Object Detection via Directional Statistics"],"prefix":"10.1109","author":[{"given":"Amirreza","family":"Shaban","sequence":"first","affiliation":[{"name":"University of Washington"}]},{"given":"Amir","family":"Rahimi","sequence":"additional","affiliation":[{"name":"ANU & ACRV"}]},{"given":"Thalaiyasingam","family":"Ajanthan","sequence":"additional","affiliation":[{"name":"ANU & ACRV"}]},{"given":"Byron","family":"Boots","sequence":"additional","affiliation":[{"name":"University of Washington"}]},{"given":"Richard","family":"Hartley","sequence":"additional","affiliation":[{"name":"ANU & ACRV"}]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.01002"},{"key":"ref38","article-title":"Frustratingly simple few-shot object detection","author":"wang","year":"2020","journal-title":"Int Conf Mach Learn"},{"journal-title":"Exploratory Data Analysis","year":"1977","author":"tukey","key":"ref33"},{"key":"ref32","article-title":"Prototypical networks for few-shot learning","author":"snell","year":"2017","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126261"},{"key":"ref30","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2015","journal-title":"Int Conf Learn Represent"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123359"},{"key":"ref36","article-title":"Matching networks for one shot learning","author":"vinyals","year":"2016","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2011.5995530"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00121"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58520-4_12"},{"key":"ref11","article-title":"Large scale visual recognition through adaptation using joint representation and multiple instance learning","author":"hoffman","year":"2016","journal-title":"The Journal of Machine Learning Research"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00517"},{"key":"ref13","article-title":"Attention-based deep multiple instance learning","author":"ilse","year":"2018","journal-title":"Int Conf Mach Learn"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00851"},{"key":"ref15","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v34i07.6784","article-title":"Tell me what they’re holding: Weakly-supervised object detection with transferable knowledge from human-object interaction","author":"kim","year":"2020","journal-title":"AAAI"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01091"},{"key":"ref17","article-title":"Deep object co-segmentation","author":"li","year":"2018","journal-title":"ACCV"},{"key":"ref18","article-title":"Image co-localization by mimicking a good detector’s confidence score distribution","author":"li","year":"2016","journal-title":"Eur Conf Comput Vis"},{"key":"ref19","article-title":"Microsoft coco: Common objects in context","author":"lin","year":"2014","journal-title":"Eur Conf Comput Vis"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00522"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15561-1_33"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58574-7_8"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"article-title":"The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results","year":"0","author":"everingham","key":"ref6"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/120"},{"key":"ref5","article-title":"Crosstransformers: spatially-aware few-shot transfer","author":"doersch","year":"2020","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00459"},{"key":"ref7","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"finn","year":"2017","journal-title":"Int Conf Mach Learn"},{"key":"ref2","article-title":"Clustering on the unit hyper-sphere using von mises-fisher distributions","author":"banerjee","year":"2005","journal-title":"Journal of Machine Learning Research"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.309"},{"key":"ref1","article-title":"Support vector machines for multiple-instance learning","author":"andrews","year":"2003","journal-title":"Adv Neural Inform Process Syst"},{"key":"ref20","article-title":"Learning to propagate labels: Transductive propagation network for few-shot learning","author":"liu","year":"2019","journal-title":"Int Conf Learn Represent"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.21236\/ADA507101"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00374"},{"key":"ref42","article-title":"Free lunch for few-shot learning: Distribution calibration","author":"yang","year":"2021","journal-title":"Int Conf Learn Represent"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00610"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00967"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01386"},{"key":"ref26","article-title":"Faster r-cnn: Towards real-time object detection with region proposal networks","author":"ren","year":"2016","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298918"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58586-0_24"}],"event":{"name":"2022 IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV)","start":{"date-parts":[[2022,1,3]]},"location":"Waikoloa, HI, USA","end":{"date-parts":[[2022,1,8]]}},"container-title":["2022 IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9706406\/9706408\/09706960.pdf?arnumber=9706960","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,15]],"date-time":"2022-06-15T20:14:56Z","timestamp":1655324096000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9706960\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":43,"URL":"https:\/\/doi.org\/10.1109\/wacv51458.2022.00111","relation":{},"subject":[],"published":{"date-parts":[[2022,1]]}}}