{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T15:44:21Z","timestamp":1730303061539,"version":"3.28.0"},"reference-count":40,"publisher":"IEEE","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1109\/vis54862.2022.00018","type":"proceedings-article","created":{"date-parts":[[2022,12,14]],"date-time":"2022-12-14T13:47:37Z","timestamp":1671025657000},"page":"45-49","source":"Crossref","is-referenced-by-count":7,"title":["Visual Auditor: Interactive Visualization for Detection and Summarization of Model Biases"],"prefix":"10.1109","author":[{"given":"David","family":"Munechika","sequence":"first","affiliation":[{"name":"Georgia Tech."}]},{"given":"Zijie J.","family":"Wang","sequence":"additional","affiliation":[{"name":"Georgia Tech."}]},{"given":"Jack","family":"Reidy","sequence":"additional","affiliation":[{"name":"Fiddler AI."}]},{"given":"Josh","family":"Rubin","sequence":"additional","affiliation":[{"name":"Fiddler AI."}]},{"given":"Krishna","family":"Gade","sequence":"additional","affiliation":[{"name":"Fiddler AI."}]},{"given":"Krishnaram","family":"Kenthapadi","sequence":"additional","affiliation":[{"name":"Fiddler AI."}]},{"given":"Duen Horng","family":"Chau","sequence":"additional","affiliation":[{"name":"Georgia Tech."}]}],"member":"263","reference":[{"key":"ref39","first-page":"325","article-title":"Learning fair representations","author":"zemel","year":"2013","journal-title":"International Conference on Machine Learning"},{"key":"ref38","article-title":"Fair balance: Mitigating machine learning bias against multiple protected attributes with data balancing","volume":"abs 2107 8310","author":"yu","year":"2021","journal-title":"CoRR"},{"journal-title":"SliceLine Fast Linear-Algebra-Based Slice Finding for ML Model Debugging","first-page":"2290","year":"2021","author":"sagadeeva","key":"ref33"},{"key":"ref32","article-title":"The impossibility theorem of machine fairness-A causal perspective","volume":"abs 2007 6024","author":"s","year":"2020","journal-title":"CoRR"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1214\/21-SS133"},{"journal-title":"Proceedings of the IEEE Int’ Conf on Data Engineering (ICDE) 2019","article-title":"Slice finder: Automated data slicing for model validation","year":"0","author":"polyzotis","key":"ref30"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2019.2934619"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/3194770.3194776"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1111\/1745-9125.12123"},{"key":"ref34","first-page":"8377","article-title":"Measuring non-expert comprehension of machine learning fairness metrics","author":"saha","year":"2020","journal-title":"International Conference on Machine Learning"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/VAST47406.2019.8986948"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2018.2864499"},{"key":"ref11","doi-asserted-by":"crossref","first-page":"875","DOI":"10.1007\/978-0-387-09823-4_45","article-title":"Data mining for imbalanced datasets: An overview","author":"chawla","year":"2009","journal-title":"Data Mining and Knowledge Discovery Handbook"},{"journal-title":"Fair prediction with disparate impact A study of bias in recidivism prediction instruments","year":"2016","author":"chouldechova","key":"ref12"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2019.00139"},{"journal-title":"UCI machine learning reposi-tory","article-title":"Taniskidou","year":"2017","author":"dheeru","key":"ref14"},{"key":"ref15","article-title":"Exploring the cloud of variable importance for the set of all good models","volume":"2","author":"dong","year":"2020","journal-title":"Nature Mach Intell"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1104.3913"},{"key":"ref17","first-page":"38","article-title":"False positives, false negatives, and false analyses: A rejoinder to “machine bias: There's software used across the country to predict future criminals. and it's biased against blacks","volume":"80","author":"flores","year":"2016","journal-title":"Federal Probation"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2008.239"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2018.2843369"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/1357054.1357160"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/2702123.2702509"},{"journal-title":"An overview of the federal post conviction risk assessment","year":"2018","key":"ref27"},{"key":"ref3","first-page":"219","article-title":"The color of algorithms: An analysis and proposed research agenda for deterring algorithmic redlining","volume":"46","author":"allen","year":"2019","journal-title":"Fordham Urb LJ"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/1007730.1007735"},{"key":"ref29","doi-asserted-by":"crossref","DOI":"10.1038\/d41586-021-01174-w","article-title":"Reactive, reproducible, collaborative: Computational notebooks evolve","volume":"593","author":"perkel","year":"2021","journal-title":"Nature"},{"key":"ref5","first-page":"671","article-title":"Big data's disparate impact","volume":"104","author":"barocas","year":"2016","journal-title":"Calif Law Review"},{"journal-title":"Fairlearn A toolkit for assessing and improving fairness in ai","year":"2020","author":"bird","key":"ref8"},{"journal-title":"ArXiv Preprint","article-title":"Ai fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias","year":"2018","author":"bellamy","key":"ref7"},{"journal-title":"React js","year":"0","key":"ref2"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2011.185"},{"journal-title":"Audit ai","year":"0","key":"ref1"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/3287560.3287592"},{"key":"ref22","first-page":"202","article-title":"Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid","volume":"96","author":"kohavi","year":"1996","journal-title":"KDD"},{"journal-title":"ELPUB","article-title":"Jupyter Notebooks-a publishing format for reproducible computational workflows","year":"2016","author":"kluyver","key":"ref21"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3411764.3445261"},{"key":"ref23","first-page":"179","article-title":"Addressing the curse of imbalanced training sets: one-sided selection","volume":"97","author":"kubat","year":"1997","journal-title":"ICML"},{"journal-title":"COMPAS Risk & Need Assessment System Selected Questions Posed by Inquiring Agencies","year":"2012","key":"ref26"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1145\/3457607"}],"event":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","start":{"date-parts":[[2022,10,16]]},"location":"Oklahoma City, OK, USA","end":{"date-parts":[[2022,10,21]]}},"container-title":["2022 IEEE Visualization and Visual Analytics (VIS)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9973064\/9973190\/09973204.pdf?arnumber=9973204","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,23]],"date-time":"2023-01-23T15:13:39Z","timestamp":1674486819000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9973204\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":40,"URL":"https:\/\/doi.org\/10.1109\/vis54862.2022.00018","relation":{},"subject":[],"published":{"date-parts":[[2022,10]]}}}