{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:32:52Z","timestamp":1727065972190},"reference-count":29,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"7","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Veh. Technol."],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1109\/tvt.2024.3380582","type":"journal-article","created":{"date-parts":[[2024,3,22]],"date-time":"2024-03-22T18:04:30Z","timestamp":1711130670000},"page":"10856-10861","source":"Crossref","is-referenced-by-count":1,"title":["A Decentralized Communication-Efficient Federated Analytics Framework for Connected Vehicles"],"prefix":"10.1109","volume":"73","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3910-3536","authenticated-orcid":false,"given":"Liang","family":"Zhao","sequence":"first","affiliation":[{"name":"Department of Information Technology, Kennesaw State University, Marietta, GA, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8913-9604","authenticated-orcid":false,"given":"Maria","family":"Valero","sequence":"additional","affiliation":[{"name":"Department of Information Technology, Kennesaw State University, Marietta, GA, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5746-2914","authenticated-orcid":false,"given":"Seyedamin","family":"Pouriyeh","sequence":"additional","affiliation":[{"name":"Department of Information Technology, Kennesaw State University, Marietta, GA, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2340-3622","authenticated-orcid":false,"given":"Fangyu","family":"Li","sequence":"additional","affiliation":[{"name":"Faculty of Information Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Engineering Research Center of Digital Community, Ministry of Education, and Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2285-2469","authenticated-orcid":false,"given":"Lulu","family":"Guo","sequence":"additional","affiliation":[{"name":"Department of Control Science and Engineering, Tongji University, Shanghai, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6606-5822","authenticated-orcid":false,"given":"Zhu","family":"Han","sequence":"additional","affiliation":[{"name":"Electrical and Computer Engineering Department, University of Houston, Houston, TX, USA"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-10-3503-6_4"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.iatssr.2018.05.005"},{"key":"ref3","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. 20th Int. Conf. Artif. Intell. Statist.","author":"McMahan","year":"2017"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2020.2986024"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2021.3090430"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/UCET51115.2020.9205482"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/OJCS.2020.2992630"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.101.2100328"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2019.2904348"},{"article-title":"Expanding the reach of federated learning by reducing client resource requirements","volume-title":"Proc. Workshop Federated Learn. Data Privacy Confidentiality","year":"2019","author":"Caldas","key":"ref10"},{"journal-title":"NIPS Workshop on Private Multi-Party Machine Learning","article-title":"Federated learning: Strategies for improving communication efficiency","year":"2016","author":"Konen","key":"ref11"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2020.2975189"},{"issue":"18","key":"ref13","doi-asserted-by":"crossref","DOI":"10.3390\/app12188980","article-title":"Secure smart communication efficiency in federated learning: Achievements and challenges","volume":"12","author":"Pouriyeh","year":"2022","journal-title":"Appl. Sci."},{"key":"ref14","first-page":"4541","article-title":"COLA: Decentralized linear learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"He","year":"2018"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.11.002"},{"article-title":"Gossipgrad: Scalable deep learning using gossip communication based asynchronous gradient descent","year":"2018","author":"Daily","key":"ref16"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.2964162"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TCCN.2020.3002253"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2021.3138848"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC48978.2021.9564783"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-018-1319-8"},{"key":"ref22","first-page":"1943","article-title":"Communication\/Computation tradeoffs in consensus-based distributed optimization","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Tsianos","year":"2012"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/MILCOM.2010.5680218"},{"article-title":"R-GAP: Recursive gradient attack on privacy","volume-title":"Proc. 9th Int. Conf. Learn. Representations","year":"2021","author":"Zhu","key":"ref24"},{"key":"ref25","first-page":"1605","article-title":"Local model poisoning attacks to byzantine-robust federated learning","volume-title":"Proc. 29th USENIX Conf. Secur. Symp.","author":"Fang","year":"2020"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2020.2988575"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.12"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1561\/1300000014"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TCOMM.2023.3302067"}],"container-title":["IEEE Transactions on Vehicular Technology"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/25\/10606142\/10478150.pdf?arnumber=10478150","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T04:24:14Z","timestamp":1725942254000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10478150\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":29,"journal-issue":{"issue":"7"},"URL":"https:\/\/doi.org\/10.1109\/tvt.2024.3380582","relation":{},"ISSN":["0018-9545","1939-9359"],"issn-type":[{"type":"print","value":"0018-9545"},{"type":"electronic","value":"1939-9359"}],"subject":[],"published":{"date-parts":[[2024,7]]}}}