{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T15:19:53Z","timestamp":1726845593630},"reference-count":42,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"9","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"name":"MIUR PON Project OK-INSAID","award":["#ARS01_00917"]},{"name":"H2020 Projects TEACHING","award":["GA #871385"]},{"name":"HumanAI-Net","award":["GA #952026"]},{"name":"MARVEL","award":["GA #957337"]},{"name":"SoBigData++","award":["GA #871042"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Veh. Technol."],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1109\/tvt.2022.3178612","type":"journal-article","created":{"date-parts":[[2022,5,27]],"date-time":"2022-05-27T21:00:29Z","timestamp":1653685229000},"page":"9937-9950","source":"Crossref","is-referenced-by-count":18,"title":["Federated Feature Selection for Cyber-Physical Systems of Systems"],"prefix":"10.1109","volume":"71","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3704-4133","authenticated-orcid":false,"given":"Pietro","family":"Cassara","sequence":"first","affiliation":[{"name":"National Research Council, Institute of Information Science and Technologies, Pisa, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8134-7844","authenticated-orcid":false,"given":"Alberto","family":"Gotta","sequence":"additional","affiliation":[{"name":"National Research Council, Institute of Information Science and Technologies, Pisa, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5574-7847","authenticated-orcid":false,"given":"Lorenzo","family":"Valerio","sequence":"additional","affiliation":[{"name":"National Research Council, Institute of Informatics and Telematics, Pisa, Italy"}]}],"member":"263","reference":[{"key":"ref1","volume-title":"Cyber-Physical Systems of Systems: FoundationsA Conceptual Model and Some Derivations: The AMADEOS Legacy","volume":"10099","author":"Bondavalli","year":"2016"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/COINS51742.2021.9524099"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2017.2749459"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.23919\/ICMU48249.2019.9006652"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/3300061.3345448"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btm344"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2017.2787959"},{"key":"ref8","first-page":"49","article-title":"A new perspective for information theoretic feature selection","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Brown","year":"2009"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623611"},{"key":"ref10","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4757-4321-0","volume-title":"The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning","author":"Rubinstein","year":"2004"},{"key":"ref11","first-page":"1200","article-title":"A review of feature selection methods with applications","volume-title":"Proc. Int. Conf. IEEE MIPRO","author":"Jovi","year":"2015"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.2478\/cait-2019-0001"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.compeleceng.2013.11.024"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2016.07.111"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CSB.2003.1227396"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/BigData.2018.8622548"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.23919\/OCEANS40490.2019.8962398"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/SASO.2014.13"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2015.04.116"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-0052-4_7"},{"key":"ref21","first-page":"1","article-title":"Federated optimization: Distributed optimization beyond the datacenter","volume-title":"arXiv1511.03575","author":"Kone","year":"2015"},{"key":"ref22","first-page":"248","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. Int. Conf. AISTATS","author":"McMahan","year":"2017"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2018.8486403"},{"key":"ref24","first-page":"1","article-title":"Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air","volume-title":"Proc. Int. Conf. IEEE ISIT","author":"Amiri","year":"2019"},{"key":"ref25","first-page":"1","article-title":"SCAFFOLD: Stochastic controlled averaging for on-device federated learning","volume-title":"arXiv:1910.06378","author":"Karimireddy","year":"2019"},{"key":"ref26","first-page":"1","article-title":"Agnostic federated learning","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Mohri","year":"2019"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/SEC.2018.00014"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2020.10.007"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/SMARTCOMP.2016.7501696"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.pmcj.2017.07.014"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/575"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-92307-5_56"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/3242969.3242985"},{"key":"ref34","volume-title":"The Theory of Information and Coding: A. Mathematical Framework for Communication","author":"McEliece","year":"1977"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1002\/0471200611"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-74759-0_536"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1177\/147447409700400103"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1016\/j.orl.2006.11.005"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2014.2336882"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2013.2284666"},{"key":"ref41","volume-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"key":"ref42","volume-title":"Infinite Sequences and Series","author":"Knopp","year":"1956"}],"container-title":["IEEE Transactions on Vehicular Technology"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/25\/9894033\/09783110.pdf?arnumber=9783110","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T03:14:45Z","timestamp":1706757285000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9783110\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":42,"journal-issue":{"issue":"9"},"URL":"https:\/\/doi.org\/10.1109\/tvt.2022.3178612","relation":{},"ISSN":["0018-9545","1939-9359"],"issn-type":[{"value":"0018-9545","type":"print"},{"value":"1939-9359","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,9]]}}}