{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T10:18:47Z","timestamp":1740133127143,"version":"3.37.3"},"reference-count":51,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"12","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100008982","name":"National Science Foundation","doi-asserted-by":"publisher","award":["CNS-1717763","CCF-2109316","CCF-2119294"],"id":[{"id":"10.13039\/501100008982","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000015","name":"U.S. Department of Energy","doi-asserted-by":"publisher","award":["DE-AC02-06CH11357","DE-AC02-05CH11231"],"id":[{"id":"10.13039\/100000015","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100017223","name":"National Energy Research Scientific Computing Center","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100017223","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Parallel Distrib. Syst."],"published-print":{"date-parts":[[2022,12,1]]},"DOI":"10.1109\/tpds.2022.3205325","type":"journal-article","created":{"date-parts":[[2022,9,16]],"date-time":"2022-09-16T19:32:19Z","timestamp":1663356739000},"page":"4903-4917","source":"Crossref","is-referenced-by-count":13,"title":["DRAS: Deep Reinforcement Learning for Cluster Scheduling in High Performance Computing"],"prefix":"10.1109","volume":"33","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9425-2780","authenticated-orcid":false,"given":"Yuping","family":"Fan","sequence":"first","affiliation":[{"name":"Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA"}]},{"given":"Boyang","family":"Li","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA"}]},{"given":"Dustin","family":"Favorite","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA"}]},{"given":"Naunidh","family":"Singh","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA"}]},{"given":"Taylor","family":"Childers","sequence":"additional","affiliation":[{"name":"Argonne National Laboratory, Lemont, IL, USA"}]},{"given":"Paul","family":"Rich","sequence":"additional","affiliation":[{"name":"Argonne National Laboratory, Lemont, IL, USA"}]},{"given":"William","family":"Allcock","sequence":"additional","affiliation":[{"name":"Argonne National Laboratory, Lemont, IL, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6418-5767","authenticated-orcid":false,"given":"Michael E.","family":"Papka","sequence":"additional","affiliation":[{"name":"Argonne National Laboratory, Lemont, IL, USA"}]},{"given":"Zhiling","family":"Lan","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA"}]}],"member":"263","reference":[{"year":"0","key":"ref39"},{"year":"0","key":"ref38"},{"article-title":"Deep reinforcement learning for multi-resource multi-machine job scheduling","year":"2017","author":"chen","key":"ref33"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CLUSTER.2017.11"},{"year":"0","key":"ref31"},{"year":"0","key":"ref30"},{"article-title":"Learning to reinforcement learn","year":"2016","author":"wang","key":"ref37"},{"key":"ref36","first-page":"1928","article-title":"Asynchronous methods for deep reinforcement learning","author":"mnih","year":"2016","journal-title":"Proc 33rd Int Conf Mach Learn"},{"key":"ref35","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/1394608.1382172"},{"key":"ref28","first-page":"44","article-title":"SLURM: Simple Linux utility for resource management","author":"jette","year":"2003","journal-title":"Proc Workshop Job Scheduling Strategies Parallel Process"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/s11227-018-2368-8"},{"year":"0","key":"ref29"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/2503210.2503264"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/71.932708"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/3335484.3335513"},{"year":"0","key":"ref22"},{"year":"0","key":"ref21"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/3322789.3328743"},{"year":"0","key":"ref23"},{"key":"ref26","first-page":"1","article-title":"Experience and practice of batch scheduling on leadership supercomputers at argonne","author":"allcock","year":"2017","journal-title":"Proc Workshop Job Scheduling Strategies Parallel Process"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.simpa.2021.100077"},{"year":"0","key":"ref50"},{"year":"0","key":"ref51"},{"key":"ref10","article-title":"Playing Atari with deep reinforcement learning","author":"mnih","year":"2013","journal-title":"Proc NIPS DEEP Learn Workshop"},{"key":"ref11","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1038\/nature24270","article-title":"Mastering the game of go without human knowledge","volume":"550","author":"silver","year":"2017","journal-title":"Nature"},{"journal-title":"Deep Learning","year":"2016","author":"goodfellow","key":"ref40"},{"journal-title":"Reinforcement Learning An Introduction","year":"2017","author":"sutton","key":"ref12"},{"key":"ref13","first-page":"1928","article-title":"Asynchronous methods for deep reinforcement learning","author":"mnih","year":"2016","journal-title":"Proc 33rd Int Conf Mach Learn"},{"article-title":"Proximal policy optimization algorithms","year":"2017","author":"schulman","key":"ref14"},{"key":"ref15","article-title":"Park: An open platform for learning-augmented computer systems","author":"mao","year":"2019","journal-title":"Proc 33rd Int Conf Neural Inf Process Syst"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3005745.3005750"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/SC41405.2020.00035"},{"key":"ref18","first-page":"1","article-title":"Towards a common environment for learning scheduling algorithms","author":"cunha","year":"2020","journal-title":"Proc Int Symp Model Anal Simul Comput Telecommun Syst"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-47436-2_68"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.suscom.2014.08.005"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3307681.3325401"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/3341302.3342080"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/2619239.2626334"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.2352\/ISSN.2470-1173.2017.19.AVM-023"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS49936.2021.00090"},{"year":"0","key":"ref49"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2019.8794127"},{"year":"0","key":"ref46"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-72971-8_10"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/INFCOM.2010.5461933"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/SC.2016.55"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1080\/09540099108946587"},{"key":"ref41","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2015","journal-title":"Proc 3rd Int Conf Learn Representations"},{"year":"0","key":"ref44"},{"year":"0","key":"ref43"}],"container-title":["IEEE Transactions on Parallel and Distributed Systems"],"original-title":[],"link":[{"URL":"https:\/\/ieeexplore.ieee.org\/ielam\/71\/9790018\/9894371-aam.pdf","content-type":"application\/pdf","content-version":"am","intended-application":"syndication"},{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/71\/9790018\/09894371.pdf?arnumber=9894371","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,4]],"date-time":"2022-11-04T01:05:27Z","timestamp":1667523927000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9894371\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,1]]},"references-count":51,"journal-issue":{"issue":"12"},"URL":"https:\/\/doi.org\/10.1109\/tpds.2022.3205325","relation":{},"ISSN":["1045-9219","1558-2183","2161-9883"],"issn-type":[{"type":"print","value":"1045-9219"},{"type":"electronic","value":"1558-2183"},{"type":"electronic","value":"2161-9883"}],"subject":[],"published":{"date-parts":[[2022,12,1]]}}}