{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:03:42Z","timestamp":1732039422452},"reference-count":49,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"1","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61672116","61601067","61802038","61672115"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Chongqing High-Tech Research Key Program","award":["cstc2019jscx-mbdx0063"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["0214005207005","2019CDJGFJSJ001"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Chongqing Youth Talent Support Program"},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2017M620412"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Parallel Distrib. Syst."],"published-print":{"date-parts":[[2021,1,1]]},"DOI":"10.1109\/tpds.2020.3009406","type":"journal-article","created":{"date-parts":[[2020,7,15]],"date-time":"2020-07-15T20:33:38Z","timestamp":1594845218000},"page":"59-71","source":"Crossref","is-referenced-by-count":241,"title":["Self-Balancing Federated Learning With Global Imbalanced Data in Mobile Systems"],"prefix":"10.1109","volume":"32","author":[{"given":"Moming","family":"Duan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3040-2065","authenticated-orcid":false,"given":"Duo","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xianzhang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Renping","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9055-5389","authenticated-orcid":false,"given":"Yujuan","family":"Tan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2778-455X","authenticated-orcid":false,"given":"Liang","family":"Liang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"143","article-title":"Zipf's law and the internet","volume":"3","author":"adamic","year":"2002","journal-title":"Glottometrics"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939785"},{"key":"ref33","first-page":"4615","article-title":"Agnostic federated learning","author":"mohri","year":"2019","journal-title":"Proceedings 36th Int Conf Mach Learn"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2944481"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2019.2929409"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737416"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007618119488"},{"key":"ref36","first-page":"878","article-title":"Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning","author":"han","year":"2005","journal-title":"Proc Int Conf Intell Comput"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1613\/jair.953"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2008.239"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133982"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2018.09.020"},{"key":"ref29","first-page":"7564","article-title":"cpSGD: Communication-efficient and differentially-private distributed SGD","author":"agarwal","year":"2018","journal-title":"Proc 32nd Int Conf Neural Inf Process Syst"},{"key":"ref2","doi-asserted-by":"crossref","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCD46524.2019.00038"},{"key":"ref20","first-page":"265","article-title":"Tensorflow: A system for large-scale machine learning","author":"abadi","year":"2016","journal-title":"Proc 12th USENIX Symp Operating Syst Des Implementation"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.14778\/2212351.2212354"},{"key":"ref21","first-page":"1223","article-title":"Large scale distributed deep networks","author":"dean","year":"2012","journal-title":"Proc 25th Int Conf Neural Inf Process Syst"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijmedinf.2018.01.007"},{"key":"ref23","article-title":"Federated learning for mobile keyboard prediction","author":"hard","year":"2018"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/GLOCOM.2018.8647927"},{"key":"ref25","first-page":"4427","article-title":"Federated multi-task learning","author":"smith","year":"2017","journal-title":"Proc 31st Int Conf Neural Inf Process Syst"},{"key":"ref10","article-title":"Federated learning for mobile keyboard prediction","author":"hard","year":"2018"},{"key":"ref11","article-title":"Towards federated learning at scale: System design","author":"bonawitz","year":"2019","journal-title":"Proc 2nd SysML Conf"},{"key":"ref40","article-title":"Leaf: A benchmark for federated settings","author":"caldas","year":"2018"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref14","article-title":"MNIST handwritten digit database","volume":"2","author":"lecun","year":"2010","journal-title":"ATT Labs"},{"key":"ref15","article-title":"Federated learning with non-IID data","author":"zhao","year":"2018"},{"key":"ref16","article-title":"Learning multiple layers of features from tiny images","author":"krizhevsky","year":"2009"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966217"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/DICTA.2016.7797091"},{"key":"ref19","article-title":"CINIC-10 is not imagenet or CIFAR-10","author":"darlow","year":"2018"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00482"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00568"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-57959-7"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2012.2205597"},{"key":"ref8","first-page":"685","article-title":"Deep learning with elastic averaging SGD","author":"zhang","year":"2015","journal-title":"Proc 28th Int Conf Neural Inf Process Syst"},{"key":"ref7","first-page":"583","article-title":"Scaling distributed machine learning with the parameter server","author":"li","year":"2014","journal-title":"Proc 11th USENIX Symp Operating Syst Des Implementation"},{"key":"ref49","article-title":"Real-world image datasets for federated learning","author":"luo","year":"2019"},{"key":"ref9","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"mcmahan","year":"2017","journal-title":"Proc 20th Int Conf Artif Intell Statist"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1007\/s00365-006-0663-2"},{"key":"ref45","article-title":"Applied federated learning: Improving google keyboard query suggestions","author":"yang","year":"2018"},{"key":"ref48","article-title":"Federated meta-learning for recommendation","author":"chen","year":"2018"},{"key":"ref47","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"finn","year":"2017","journal-title":"Proc 34th Int Conf Mach Learn"},{"key":"ref42","first-page":"1058","article-title":"Regularization of neural networks using dropconnect","volume":"28","author":"wan","year":"2013","journal-title":"Proc 30th Int Conf Mach Learn"},{"key":"ref41","article-title":"Dynamics of instagram users","author":"bodaghi","year":"2017"},{"key":"ref44","volume":"16","author":"iglewicz","year":"1993","journal-title":"How to Detect and Handle Outliers"},{"key":"ref43","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014"}],"container-title":["IEEE Transactions on Parallel and Distributed Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/71\/9152195\/09141436.pdf?arnumber=9141436","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T14:50:28Z","timestamp":1652194228000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9141436\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,1]]},"references-count":49,"journal-issue":{"issue":"1"},"URL":"https:\/\/doi.org\/10.1109\/tpds.2020.3009406","relation":{},"ISSN":["1045-9219","1558-2183","2161-9883"],"issn-type":[{"value":"1045-9219","type":"print"},{"value":"1558-2183","type":"electronic"},{"value":"2161-9883","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,1]]}}}