{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:41Z","timestamp":1728177401050},"reference-count":181,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"5","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Indo-Norwegian Collaboration in Autonomous Cyber-Physical Systems","award":["287918"]},{"DOI":"10.13039\/501100005416","name":"Research Council of Norway","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100005416","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Pattern Anal. Mach. Intell."],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1109\/tpami.2023.3322785","type":"journal-article","created":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T18:56:48Z","timestamp":1696877808000},"page":"2672-2691","source":"Crossref","is-referenced-by-count":53,"title":["The Impact of Adversarial Attacks on Federated Learning: A Survey"],"prefix":"10.1109","volume":"46","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4250-4429","authenticated-orcid":false,"given":"Kummari Naveen","family":"Kumar","sequence":"first","affiliation":[{"name":"Department of Computer Science and Engineering, Indian Institute of Technology, Hyderabad, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7316-0836","authenticated-orcid":false,"given":"Chalavadi Krishna","family":"Mohan","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Indian Institute of Technology, Hyderabad, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1023-2118","authenticated-orcid":false,"given":"Linga Reddy","family":"Cenkeramaddi","sequence":"additional","affiliation":[{"name":"Department of Information and Communication Technology, University of Agder, Grimstad, Norway"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3129809"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2022.3185116"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2022.3201983"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2023.3243080"},{"key":"ref5","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. Artif. Intell. Statist.","author":"McMahan"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3098010"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.iswa.2022.200064"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2021.102317"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2022.3186918"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-021-00390-3"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/SP46214.2022.9833647"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.3023126"},{"key":"ref13","first-page":"1623","article-title":"Local model poisoning attacks to byzantine-robust federated learning","volume-title":"Proc. 29th USENIX Conf. Secur. Symp.","author":"Fang"},{"key":"ref14","first-page":"994","article-title":"CAFE: Catastrophic data leakage in vertical federated learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Jin"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3510032"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737416"},{"key":"ref17","first-page":"8635","article-title":"A little is enough: Circumventing defenses for distributed learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Baruch"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3128646"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ICC45041.2023.10279348"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.simpa.2023.100469"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.47277\/ijcncs\/8(7)1"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2020.2986024"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/NaNA53684.2021.00062"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ComComAp53641.2021.9653016"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3075203"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2021.104468"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2020.10.007"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/MSEC.2020.3039941"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-91387-8_1"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1186\/s42400-021-00105-6"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/WCNC51071.2022.9771619"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/BigData55660.2022.10020431"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/tnnls.2022.3216981"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2021.05.016"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/s11704-021-0598-z"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-021-10098-w"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3150363"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.18280\/ria.360106"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1155\/2022\/2886795"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2022.09.011"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2023.3238823"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/j.csi.2023.103723"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-11748-0_3"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.3390\/electronics12020260"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2022.3156645"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/tbdata.2022.3192121"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2020.2988525"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2019.03.010"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3195956"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2021.24498"},{"key":"ref51","article-title":"pFedDef: Defending grey-box attacks for personalized federated learning","author":"Kim","year":"2022"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/AIPR50011.2020.9425267"},{"key":"ref53","article-title":"Efficient passive membership inference attack in federated learning","author":"Zari","year":"2021"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00065"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2023.3275161"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/ISPCE-ASIA57917.2022.9971068"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2023.103193"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/SRDS55811.2022.00012"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN55064.2022.9891990"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2022.3227761"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1109\/TrustCom53373.2021.00062"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2021.3128679"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/TCSS.2022.3161016"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1109\/tbdata.2022.3159236"},{"key":"ref65","first-page":"35007","article-title":"Learning to attack federated learning: A model-based reinforcement learning attack framework","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Li"},{"key":"ref66","article-title":"What else is leaked when eavesdropping federated learning?","volume-title":"Proc. CCS Workshop Privacy Preserv. Mach. Learn.","author":"Xu"},{"key":"ref67","first-page":"16070","article-title":"Attack of the tails: Yes, you really can backdoor federated learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Wang"},{"key":"ref68","first-page":"1","article-title":"DBA: Distributed backdoor attacks against federated learning","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Xie"},{"key":"ref69","first-page":"634","article-title":"Analyzing federated learning through an adversarial lens","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Bhagoji"},{"key":"ref70","first-page":"2938","article-title":"How to backdoor federated learning","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Bagdasaryan"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1109\/ICSMC.2000.886455"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.2006.1637931"},{"key":"ref73","first-page":"1397","article-title":"Label inference attacks against vertical federated learning","volume-title":"Proc. 31st USENIX Secur. Symp.","author":"Fu"},{"key":"ref74","first-page":"907","article-title":"Characterizing internal evasion attacks in federated learning","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Kim"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.1109\/ICPADS56603.2022.00044"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE51399.2021.00023"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2022.3140273"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134012"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.1109\/BigData47090.2019.9005465"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2021.102402"},{"key":"ref81","article-title":"Fat: Federated adversarial training","author":"Zizzo","year":"2020"},{"key":"ref82","article-title":"Adversarial training in communication constrained federated learning","author":"Shah","year":"2021"},{"key":"ref83","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2023.110384"},{"key":"ref84","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2022.3166101"},{"key":"ref85","doi-asserted-by":"publisher","DOI":"10.1109\/LWC.2021.3074605"},{"key":"ref86","first-page":"118","article-title":"Machine learning with adversaries: Byzantine tolerant gradient descent","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Blanchard"},{"key":"ref87","first-page":"5650","article-title":"Byzantine-robust distributed learning: Towards optimal statistical rates","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Yin"},{"key":"ref88","first-page":"3521","article-title":"The hidden vulnerability of distributed learning in byzantium","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Guerraoui"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i10.17118"},{"key":"ref90","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2020.3002796"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2022.3169918"},{"key":"ref92","article-title":"Byzantine-robust federated machine learning through adaptive model averaging","author":"Mu\u00f1oz-Gonz\u00e1lez","year":"2019"},{"key":"ref93","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2021.24434"},{"key":"ref94","doi-asserted-by":"publisher","DOI":"10.1145\/3511808.3557475"},{"key":"ref95","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM54844.2022.00016"},{"key":"ref96","doi-asserted-by":"publisher","DOI":"10.1109\/AICAS51828.2021.9458510"},{"key":"ref97","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2021.3135422"},{"key":"ref98","doi-asserted-by":"publisher","DOI":"10.1145\/3437880.3460403"},{"key":"ref99","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2022.03.003"},{"key":"ref100","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2022.04.010"},{"key":"ref101","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2022.102819"},{"key":"ref102","doi-asserted-by":"publisher","DOI":"10.1109\/WCNC49053.2021.9417334"},{"key":"ref103","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS51616.2021.00086"},{"key":"ref104","doi-asserted-by":"publisher","DOI":"10.1109\/DSA52907.2021.00081"},{"key":"ref105","first-page":"7167","article-title":"A simple unified framework for detecting out-of-distribution samples and adversarial attacks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Lee"},{"key":"ref106","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i8.16849"},{"key":"ref107","article-title":"Diverse client selection for federated learning via submodular maximization","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Balakrishnan"},{"key":"ref108","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP43922.2022.9747497"},{"key":"ref109","doi-asserted-by":"publisher","DOI":"10.1145\/3472883.3486990"},{"key":"ref110","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2022.23156"},{"key":"ref111","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2020.3044223"},{"key":"ref112","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2022.110178"},{"key":"ref113","article-title":"Learning to detect malicious clients for robust federated learning","author":"Li","year":"2020"},{"key":"ref114","doi-asserted-by":"publisher","DOI":"10.1109\/WCNC51071.2022.9771594"},{"key":"ref115","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3128164"},{"key":"ref116","doi-asserted-by":"publisher","DOI":"10.1145\/3534678.3539231"},{"key":"ref117","doi-asserted-by":"publisher","DOI":"10.1145\/3548606.3560611"},{"key":"ref118","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2021.3134647"},{"key":"ref119","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3161943"},{"key":"ref120","first-page":"12613","article-title":"FL-WBC: Enhancing robustness against model poisoning attacks in federated learning from a client perspective","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Sun"},{"key":"ref121","first-page":"7587","article-title":"SparseFed: Mitigating model poisoning attacks in federated learning with sparsification","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Panda"},{"key":"ref122","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2021.3108434"},{"key":"ref123","first-page":"493","article-title":"BatchCrypt: Efficient homomorphic encryption for cross-silo federated learning","volume-title":"Proc. USENIX Annu. Tech. Conf.","author":"Zhang"},{"key":"ref124","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2022.3185327"},{"key":"ref125","doi-asserted-by":"publisher","DOI":"10.1109\/ICC40277.2020.9148790"},{"key":"ref126","first-page":"12878","article-title":"Data-free knowledge distillation for heterogeneous federated learning","volume-title":"Proc. Int. Conf. Mach. Lear.","author":"Zhu"},{"key":"ref127","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-022-29763-x"},{"key":"ref128","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00993"},{"key":"ref129","article-title":"Semi-supervised knowledge transfer for deep learning from private training data","author":"Papernot","year":"2016"},{"key":"ref130","doi-asserted-by":"publisher","DOI":"10.1109\/tbdata.2022.3208736"},{"key":"ref131","first-page":"1","article-title":"Smpai: Secure multi-party computation for federated learning","volume-title":"Proc. NeurIPS Workshop Robust AI Financial Serv.","author":"Mugunthan"},{"key":"ref132","doi-asserted-by":"publisher","DOI":"10.1145\/3383455.3422562"},{"key":"ref133","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP51992.2021.00054"},{"key":"ref134","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.02.037"},{"key":"ref135","doi-asserted-by":"publisher","DOI":"10.1145\/3458864.3466628"},{"key":"ref136","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2022.3159092"},{"key":"ref137","doi-asserted-by":"publisher","DOI":"10.1109\/CLOUD53861.2021.00038"},{"key":"ref138","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v36i8.20825"},{"key":"ref139","doi-asserted-by":"publisher","DOI":"10.1109\/Allerton49937.2022.9929413"},{"key":"ref140","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512233"},{"key":"ref141","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM48880.2022.9796841"},{"key":"ref142","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00919"},{"key":"ref143","doi-asserted-by":"publisher","DOI":"10.1109\/ICC42927.2021.9500936"},{"key":"ref144","first-page":"7232","article-title":"Evaluating gradient inversion attacks and defenses in federated learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Huang"},{"key":"ref145","article-title":"On the effectiveness of regularization against membership inference attacks","author":"Kaya","year":"2020"},{"key":"ref146","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2020.2988575"},{"key":"ref147","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.2991416"},{"key":"ref148","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00044"},{"key":"ref149","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3073925"},{"key":"ref150","first-page":"32","article-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","year":"2009"},{"key":"ref151","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref152","article-title":"Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms","author":"Xiao","year":"2017"},{"key":"ref153","article-title":"Acquire valued shoppers challenge","author":"Dmdave","year":"2014"},{"key":"ref154","article-title":"Leaf: A benchmark for federated settings","author":"Caldas","year":"2018"},{"key":"ref155","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966217"},{"key":"ref156","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"ref157","first-page":"7","article-title":"Labeled faces in the wild: A database forstudying face recognition in unconstrained environments","volume-title":"Proc. Workshop Faces Real-Life\u2019Images: Detection, Alignment, Recognit.","author":"Huang"},{"key":"ref158","doi-asserted-by":"publisher","DOI":"10.1002\/0471722227.ch27"},{"key":"ref159","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2867350"},{"key":"ref160","doi-asserted-by":"publisher","DOI":"10.1145\/3511808.3557108"},{"key":"ref161","doi-asserted-by":"publisher","DOI":"10.1109\/LWC.2022.3141120"},{"key":"ref162","doi-asserted-by":"publisher","DOI":"10.1117\/12.2667569"},{"key":"ref163","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1604.01685"},{"key":"ref164","doi-asserted-by":"publisher","DOI":"10.1016\/j.egypro.2015.03.195"},{"key":"ref165","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2021.3081560"},{"key":"ref166","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2020.3035807"},{"key":"ref167","article-title":"Federated learning for mobile keyboard prediction","author":"Hard","year":"2018"},{"key":"ref168","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2022.3145360"},{"key":"ref169","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3089713"},{"key":"ref170","doi-asserted-by":"publisher","DOI":"10.14722\/diss.2020.23003"},{"key":"ref171","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3022862"},{"key":"ref172","doi-asserted-by":"publisher","DOI":"10.3390\/su132313050"},{"key":"ref173","doi-asserted-by":"publisher","DOI":"10.3390\/s19051058"},{"key":"ref174","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2021.3112476"},{"key":"ref175","first-page":"1299","article-title":"When does machine learning FAIL? generalized transferability for evasion and poisoning attacks,","author":"Suciu","journal-title":"Proc. 27th USENIX Secur. Symp."},{"key":"ref176","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-11748-0_3"},{"key":"ref177","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2022.3172310"},{"key":"ref178","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3131614"},{"key":"ref179","doi-asserted-by":"publisher","DOI":"10.1109\/tcss.2021.3134463"},{"key":"ref180","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.01956"},{"key":"ref181","first-page":"1057","article-title":"FLASH: Towards a high-performance hardware acceleration architecture for cross-silo federated learning","volume-title":"Proc. 20th USENIX Symp. Netw. Syst. Des. Implementation","author":"Zhang"}],"container-title":["IEEE Transactions on Pattern Analysis and Machine Intelligence"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/34\/10490207\/10274102.pdf?arnumber=10274102","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,9]],"date-time":"2024-04-09T19:38:35Z","timestamp":1712691515000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10274102\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":181,"journal-issue":{"issue":"5"},"URL":"https:\/\/doi.org\/10.1109\/tpami.2023.3322785","relation":{},"ISSN":["0162-8828","2160-9292","1939-3539"],"issn-type":[{"value":"0162-8828","type":"print"},{"value":"2160-9292","type":"electronic"},{"value":"1939-3539","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5]]}}}