{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,11]],"date-time":"2025-04-11T00:45:37Z","timestamp":1744332337046,"version":"3.37.3"},"reference-count":105,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"China's Ministry of Science and Technology","award":["2020YFA0713800"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11971229","12090023"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Pattern Anal. Mach. Intell."],"published-print":{"date-parts":[[2022,10,1]]},"DOI":"10.1109\/tpami.2021.3100536","type":"journal-article","created":{"date-parts":[[2021,7,27]],"date-time":"2021-07-27T20:48:15Z","timestamp":1627418895000},"page":"6695-6714","source":"Crossref","is-referenced-by-count":211,"title":["AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem?"],"prefix":"10.1109","volume":"44","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9739-0855","authenticated-orcid":false,"given":"Jun","family":"Ma","sequence":"first","affiliation":[{"name":"Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8759-4811","authenticated-orcid":false,"given":"Yao","family":"Zhang","sequence":"additional","affiliation":[{"name":"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China"}]},{"given":"Song","family":"Gu","sequence":"additional","affiliation":[{"name":"School of Automation, Nanjing University of Information Science and Technology, Nanjing, China"}]},{"given":"Cheng","family":"Zhu","sequence":"additional","affiliation":[{"name":"Shenzhen Haichuang Medical CO., LTD., Shenzhen, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4010-5686","authenticated-orcid":false,"given":"Cheng","family":"Ge","sequence":"additional","affiliation":[{"name":"Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4292-6835","authenticated-orcid":false,"given":"Yichi","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Biological Science and Medical Engineering, Beihang University, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1334-1990","authenticated-orcid":false,"given":"Xingle","family":"An","sequence":"additional","affiliation":[{"name":"Beijing Infervision Technology CO. LTD., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5661-8796","authenticated-orcid":false,"given":"Congcong","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China"}]},{"given":"Qiyuan","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Electronic Science and Engineering, Nanjing University, Nanjing, China"}]},{"given":"Xin","family":"Liu","sequence":"additional","affiliation":[{"name":"Suzhou LungCare Medical Technology Co., Ltd, Suzhou, China"}]},{"given":"Shucheng","family":"Cao","sequence":"additional","affiliation":[{"name":"Bioengineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9595-5640","authenticated-orcid":false,"given":"Qi","family":"Zhang","sequence":"additional","affiliation":[{"name":"Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Taipa, Macau, China"}]},{"given":"Shangqing","family":"Liu","sequence":"additional","affiliation":[{"name":"School of Biomedical Engineering, Southern Medical University, Guangzhou, China"}]},{"given":"Yunpeng","family":"Wang","sequence":"additional","affiliation":[{"name":"Institutes of Biomedical Sciences, Fudan University, Shanghai, China"}]},{"given":"Yuhui","family":"Li","sequence":"additional","affiliation":[{"name":"Computational Biology, University of Southern California, Los Angeles, CA, USA"}]},{"given":"Jian","family":"He","sequence":"additional","affiliation":[{"name":"Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8298-1273","authenticated-orcid":false,"given":"Xiaoping","family":"Yang","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Nanjing University, Nanjing, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2009.2013851"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.11091710"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1002\/jmrs.65"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.04.005"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/s00330-018-5695-5"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2021.3054390"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1148\/ryai.2020190102"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1148\/ryai.2020200029"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1038\/s41591-020-1041-y"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.03.009"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101693"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.01077"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.101979"},{"article-title":"The 2019 DAVIS challenge on VOS: Unsupervised multi-object segmentation","year":"2019","author":"Caelles","key":"ref15"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102680"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101821"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/S0097-8493(02)00102-4"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1177\/1553350620954581"},{"article-title":"A large annotated medical image dataset for the development and evaluation of segmentation algorithms","year":"2019","author":"Simpson","key":"ref20"},{"key":"ref21","article-title":"Data from pancreas-CT","volume-title":"Cancer Imaging Archive","author":"Roth","year":"2016"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24553-9_68"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s10278-013-9622-7"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-020-01008-z"},{"article-title":"Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy","year":"2018","author":"Nikolov","key":"ref25"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1007\/BF00133570"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1006\/cviu.1995.1004"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2015.06.012"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2015.2481326"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1118\/1.4934834"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2017.08.020"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2010.2056369"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.ics.2005.03.079"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2015.06.009"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2015.05.009"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2837502"},{"article-title":"Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge","year":"2018","author":"Bakas","key":"ref38"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2948320"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32254-0_36"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-67558-9_23"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66179-7_71"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101909"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66182-7_79"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2018.01.006"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_52"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2019.2955178"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.3022693"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2019.00035"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00428"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00578"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2018.03.001"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2806309"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46976-8_12"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2018.05.038"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1007\/s11548-016-1501-5"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00937-3_48"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2975347"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.79"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.02.006"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-019-05855-6"},{"article-title":"Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks","volume-title":"Proc. Workshop Challenges Representation Learn.","author":"Lee","key":"ref62"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00521"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2019.00020"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1117\/12.2549033"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58592-1_27"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101766"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-67389-9_10"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1109\/BIBM47256.2019.8983127"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00325"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46478-7_34"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33018843"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.344"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32248-9_20"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.209"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.3023152"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-020-01293-3"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.1016\/s0079-7421(08)60536-8"},{"article-title":"An empirical investigation of catastrophic forgeting in gradient-based neural networks","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Goodfellow","key":"ref79"},{"article-title":"A comprehensive, application-oriented study of catastrophic forgetting in DNNs","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Pf\u00fclb","key":"ref80"},{"key":"ref81","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.01.012"},{"key":"ref82","first-page":"17","article-title":"Core50: A new dataset and benchmark for continuous object recognition","volume-title":"Proc. 1st Annu. Conf. Robot Learn.","author":"Lomonaco"},{"key":"ref83","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2017.7989364"},{"article-title":"Continual learning: A comparative study on how to defy forgetting in classification tasks","year":"2019","author":"De Lange","key":"ref84"},{"article-title":"Multi-atlas labeling beyond the cranial vault-workshop and challenge","year":"2015","author":"Landman","key":"ref85"},{"key":"ref86","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2578680"},{"key":"ref87","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101950"},{"key":"ref88","doi-asserted-by":"publisher","DOI":"10.1200\/JCO.2020.38.6_suppl.626"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.1038\/s41597-020-00715-8"},{"key":"ref90","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_49"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.2307\/j.ctv1xx9n1q.7"},{"key":"ref92","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.79"},{"key":"ref93","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102035"},{"key":"ref94","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.85"},{"article-title":"The 2017 DAVIS challenge on video object segmentation","year":"2017","author":"Pont-Tuset","key":"ref95"},{"key":"ref96","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01070"},{"key":"ref97","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58545-7_40"},{"article-title":"A sparse annotation strategy based on attention-guided active learning for 3d medical image segmentation","year":"2019","author":"Zhang","key":"ref98"},{"key":"ref99","first-page":"109","article-title":"Efficient inference in fully connected CRFs with Gaussian edge potentials","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Kr\u00e4henb\u00fchl"},{"key":"ref100","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2016.7493497"},{"key":"ref101","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_48"},{"key":"ref102","doi-asserted-by":"publisher","DOI":"10.1109\/CAC.2017.8243454"},{"key":"ref103","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.10.002"},{"key":"ref104","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-11726-9_28"},{"key":"ref105","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2773081"},{"key":"ref106","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2930679"}],"container-title":["IEEE Transactions on Pattern Analysis and Machine Intelligence"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/34\/9893033\/09497733.pdf?arnumber=9497733","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T23:24:57Z","timestamp":1705015497000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9497733\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,1]]},"references-count":105,"journal-issue":{"issue":"10"},"URL":"https:\/\/doi.org\/10.1109\/tpami.2021.3100536","relation":{},"ISSN":["0162-8828","2160-9292","1939-3539"],"issn-type":[{"type":"print","value":"0162-8828"},{"type":"electronic","value":"2160-9292"},{"type":"electronic","value":"1939-3539"}],"subject":[],"published":{"date-parts":[[2022,10,1]]}}}