{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T13:34:15Z","timestamp":1742391255830,"version":"3.37.3"},"reference-count":45,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61671182","61906162","U19A2073"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100020785","name":"Shenzhen Research Institute of Big Data","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100020785","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Shenzhen Institute of Artificial Intelligence and Robotics for Society"},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2019TQ0316","2019M662198"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Pattern Anal. Mach. Intell."],"published-print":{"date-parts":[[2021,10,1]]},"DOI":"10.1109\/tpami.2020.2983926","type":"journal-article","created":{"date-parts":[[2020,3,30]],"date-time":"2020-03-30T22:39:07Z","timestamp":1585607947000},"page":"3446-3461","source":"Crossref","is-referenced-by-count":47,"title":["Learning Content-Weighted Deep Image Compression"],"prefix":"10.1109","volume":"43","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7327-3304","authenticated-orcid":false,"given":"Mu","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3330-783X","authenticated-orcid":false,"given":"Wangmeng","family":"Zuo","sequence":"additional","affiliation":[]},{"given":"Shuhang","family":"Gu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8181-4836","authenticated-orcid":false,"given":"Jane","family":"You","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5027-5286","authenticated-orcid":false,"given":"David","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"article-title":"Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1","year":"2016","author":"courbariaux","key":"ref39"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_32"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.151"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref31","first-page":"194","article-title":"LSTM neural networks for language modeling","author":"sundermeyer","year":"2012","journal-title":"Proc 13th Annu Conf Int Speech Commun Assoc"},{"key":"ref30","first-page":"1045","article-title":"Recurrent neural network based language model","author":"mikolov","year":"2010","journal-title":"Proc 11th Annu Conf Int Speech Commun Assoc"},{"article-title":"Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients","year":"2016","author":"zhou","key":"ref37"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/ACSSC.2003.1292216"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.image.2005.04.001"},{"key":"ref10","first-page":"4797","article-title":"Conditional image generation with pixelcnn decoders","author":"oord","year":"2016","journal-title":"Proc 30th Int Conf Neural Inf Process Syst"},{"key":"ref40","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2015","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref11","first-page":"1747","article-title":"Pixel recurrent neural networks","author":"van oord","year":"2016","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref12","first-page":"2595","article-title":"Image compression with xvc","author":"samuelsson","year":"2018","journal-title":"Proc IEEE Conf Comp Vis Pattern Recognit"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00461"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00462"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00339"},{"key":"ref16","first-page":"341","article-title":"Image denoising and inpainting with deep neural networks","author":"xie","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1515\/9783110524116"},{"key":"ref18","first-page":"184","article-title":"Learning a deep convolutional network for image super-resolution","author":"dong","year":"2014","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2439281"},{"article-title":"Efficient trimmed convolutional arithmetic encoding for lossless image compression","year":"2018","author":"li","key":"ref28"},{"article-title":"Variable rate image compression with recurrent neural networks","year":"2015","author":"toderici","key":"ref4"},{"key":"ref27","first-page":"2587","article-title":"Extreme learned image compression with GANs","author":"agustsson","year":"2018","journal-title":"Proc IEEE Conf Comp Vis Pattern Recognit"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2012.2221191"},{"key":"ref6","article-title":"Lossy image compression with compressive autoencoders","author":"theis","year":"2017","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1002\/j.1538-7305.1948.tb01338.x"},{"key":"ref5","article-title":"End-to-end optimized image compression","author":"ball\u00e9","year":"2017","journal-title":"Int Conf Learn Representations"},{"key":"ref8","first-page":"2922","article-title":"Real-time adaptive image compression","author":"rippel","year":"2017","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref7","first-page":"1141","article-title":"Soft-to-hard vector quantization for end-to-end learning compressible representations","author":"agustsson","year":"2017","journal-title":"Proc Advances Neural Inf Process Syst"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/79.952804"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2003.815173"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/30.125072"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.73"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1080\/2165347X.2015.1024298"},{"key":"ref22","first-page":"2617","article-title":"Variational autoencoder for low bit-rate image compression","author":"zhou","year":"2018","journal-title":"Proc IEEE Conf Comp Vis Pattern Recognit"},{"key":"ref21","first-page":"2567","article-title":"Compression artifact removal using multi-scale reshuffling convolutional network.","author":"tang","year":"2018","journal-title":"Proc IEEE Conf Comp Vis Pattern Recognit"},{"key":"ref42","first-page":"64","article-title":"Introduction to arithmetic coding-theory and practice","author":"said","year":"2004","journal-title":"Technical Report in Hewlett-Packard Laboratories"},{"key":"ref24","article-title":"Variational image compression with a scale hyperprior","author":"ball\u00e9","year":"2018","journal-title":"Proc Int Conf Learn Representations"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/214762.214771"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.577"},{"key":"ref44","first-page":"63","article-title":"Testimages: A large-scale archive for testing visual devices and basic image processing algorithms","author":"asuni","year":"2014","journal-title":"Proc Smart Tools Apps Graph Conf"},{"key":"ref26","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Proc Advances Neural Inf Process Syst"},{"article-title":"BPG image format","year":"2019","author":"bellard","key":"ref43"},{"key":"ref25","first-page":"10 794","article-title":"Joint autoregressive and hierarchical priors for learned image compression","author":"minnen","year":"2018","journal-title":"Proc 31th Int Conf Neural Inf Process Syst"}],"container-title":["IEEE Transactions on Pattern Analysis and Machine Intelligence"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/34\/9527405\/09050860.pdf?arnumber=9050860","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T14:49:24Z","timestamp":1652194164000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9050860\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10,1]]},"references-count":45,"journal-issue":{"issue":"10"},"URL":"https:\/\/doi.org\/10.1109\/tpami.2020.2983926","relation":{},"ISSN":["0162-8828","2160-9292","1939-3539"],"issn-type":[{"type":"print","value":"0162-8828"},{"type":"electronic","value":"2160-9292"},{"type":"electronic","value":"1939-3539"}],"subject":[],"published":{"date-parts":[[2021,10,1]]}}}