{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T13:03:20Z","timestamp":1725455000531},"reference-count":50,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"12","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61603373","61629301"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Pattern Anal. Mach. Intell."],"published-print":{"date-parts":[[2019,12,1]]},"DOI":"10.1109\/tpami.2018.2870154","type":"journal-article","created":{"date-parts":[[2018,9,14]],"date-time":"2018-09-14T20:27:17Z","timestamp":1536956837000},"page":"2961-2974","source":"Crossref","is-referenced-by-count":17,"title":["Order-Preserving Optimal Transport for Distances between Sequences"],"prefix":"10.1109","volume":"41","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8560-1910","authenticated-orcid":false,"given":"Bing","family":"Su","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9522-6157","authenticated-orcid":false,"given":"Gang","family":"Hua","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","article-title":"Transport-based analysis, modeling, and learning from signal and data distributions","author":"kolouri","year":"2016","journal-title":"arXiv 1609 04767"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/s10851-017-0726-4"},{"key":"ref33","first-page":"685","article-title":"Fast computation of wasserstein barycenters","author":"cuturi","year":"2014","journal-title":"Proc 31st Int Conf Mach Learn"},{"key":"ref32","first-page":"3440","article-title":"Stochastic optimization for large-scale optimal transport","author":"aude","year":"2016","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1145\/2072298.2071946"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.1058"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-018-5717-1"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2615921"},{"key":"ref35","first-page":"2053","article-title":"Learning with a wasserstein loss","author":"frogner","year":"2015","journal-title":"Proc 28th Int Conf Neural Inf Process Syst"},{"key":"ref34","first-page":"3312","article-title":"Principal geodesic analysis for probability measures under the optimal transport metric","author":"seguy","year":"2015","journal-title":"Proc 28th Int Conf Neural Inf Process Syst"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2001.937632"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1023\/A:1026543900054"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2004.1315035"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2004.13"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/S0020-0255(76)90746-5"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.25"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.115"},{"key":"ref21","first-page":"894","article-title":"Soft-dtw: A differentiable loss function for time-series","author":"cuturi","year":"2017","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2704438"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2665545"},{"key":"ref26","first-page":"1817","article-title":"Metric learning for temporal sequence alignment","author":"lajugie","year":"2014","journal-title":"Proc Neural Inf Process Syst"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.334"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299176"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.2307\/2314570"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.310"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/S0024-3795(97)00010-4"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972740.2"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.3233\/IDA-2007-11508"},{"key":"ref14","first-page":"117","article-title":"Sparsedtw: a novel approach to speed up dynamic time warping","author":"al-naymat","year":"2009","journal-title":"Proc 8th Australasian Data Mining Conf -Vol 101"},{"key":"ref15","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1214\/13-AOAS701","article-title":"Statistical analysis of trajectories on riemannian manifolds: Bird migration, hurricane tracking and video surveillance","volume":"8","author":"su","year":"2014","journal-title":"Ann Appl Statist"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2439257"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_13"},{"key":"ref18","first-page":"2286","article-title":"Canonical time warping for alignment of human behavior","author":"zhou","year":"2009","journal-title":"Proc Neural Inf Process Syst"},{"key":"ref19","first-page":"1282","article-title":"Generalized time warping for multi-modal alignment of human motion","author":"zhou","year":"2012","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2836312"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299084"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TASSP.1978.1163055"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177729694"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2017.2695801"},{"key":"ref7","volume":"338","author":"villani","year":"2008","journal-title":"Optimal Transport Old and New"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1145\/2522848.2532595"},{"key":"ref9","first-page":"2292","article-title":"Sinkhorn distances: Lightspeed computation of optimal transport","author":"cuturi","year":"2013","journal-title":"Proc 26th Int Conf Neural Inf Process Syst"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2012.6247813"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2010.5543273"},{"key":"ref48","article-title":"Temporal classification: Extending the classification paradigm to multivariate time series","author":"kadous","year":"2002"},{"key":"ref47","author":"bache","year":"2013","journal-title":"UCI Machine Learning Repository"},{"key":"ref42","article-title":"Statistical texture measures computed from gray level coocurrence matrices","volume":"5","author":"albregtsen","year":"2008","journal-title":"Image Processing Laboratory Department of Informatics"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1016\/0022-247X(66)90184-3"},{"key":"ref44","article-title":"The UCR time series classification archive","author":"chen","year":"2015"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1016\/0024-3795(89)90490-4"}],"container-title":["IEEE Transactions on Pattern Analysis and Machine Intelligence"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/34\/8890757\/08466003.pdf?arnumber=8466003","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T20:48:54Z","timestamp":1657745334000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8466003\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12,1]]},"references-count":50,"journal-issue":{"issue":"12"},"URL":"https:\/\/doi.org\/10.1109\/tpami.2018.2870154","relation":{},"ISSN":["0162-8828","2160-9292","1939-3539"],"issn-type":[{"value":"0162-8828","type":"print"},{"value":"2160-9292","type":"electronic"},{"value":"1939-3539","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,12,1]]}}}