{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T05:12:24Z","timestamp":1723871544339},"reference-count":57,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"6","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["EP\/T021063\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Netw. Sci. Eng."],"published-print":{"date-parts":[[2022,11,1]]},"DOI":"10.1109\/tnse.2022.3196463","type":"journal-article","created":{"date-parts":[[2022,8,5]],"date-time":"2022-08-05T19:31:50Z","timestamp":1659727910000},"page":"4220-4234","source":"Crossref","is-referenced-by-count":14,"title":["Federated Learning in Massive MIMO 6G Networks: Convergence Analysis and Communication-Efficient Design"],"prefix":"10.1109","volume":"9","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1810-1646","authenticated-orcid":false,"given":"Yuchen","family":"Mu","sequence":"first","affiliation":[{"name":"Institute for Digital Communications, The University of Edinburgh, Edinburgh, U.K."}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8535-7663","authenticated-orcid":false,"given":"Navneet","family":"Garg","sequence":"additional","affiliation":[{"name":"Institute for Digital Communications, The University of Edinburgh, Edinburgh, U.K."}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7636-1246","authenticated-orcid":false,"given":"Tharmalingam","family":"Ratnarajah","sequence":"additional","affiliation":[{"name":"Institute for Digital Communications, The University of Edinburgh, Edinburgh, U.K."}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"ref2","volume-title":"Computer Vision: A Modern Approach","author":"Forsyth","year":"2012"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/MCI.2018.2840738"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.07.005"},{"key":"ref5","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume-title":"Proc. 20th Int. Conf. Artif. Intell. Statist.","author":"McMahan"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2021.3124599"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/3338501.3357371"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/3338501.3357370"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761267"},{"key":"ref10","first-page":"1","article-title":"On the convergence of FedAvg on non-iid data","volume-title":"Proc. Int. Conf. Learn. Representations","author":"Li","year":"2020"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.2019.1900271"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2975749"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/MWC.01.1900525"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322479"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.23919\/JCC.2020.09.009"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.eng.2021.12.002"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.011.2000195"},{"key":"ref18","article-title":"Towards ubiquitous AI in 6G with federated learning","author":"Xiao","year":"2020"},{"key":"ref19","first-page":"1","article-title":"Federated learning: Strategies for improving communication efficiency","volume-title":"Proc. NIPS Workshop Private Multi-Party Mach. Learn.","author":"Konecn","year":"2016"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2020.3041388"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP40776.2020.9054168"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1045"},{"key":"ref23","first-page":"1509","article-title":"Terngrad: Ternary gradients to reduce communication in distributed deep learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Wen","year":"2017"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2944481"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3024629"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2019.8737464"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TNET.2020.3035770"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3037554"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.23919\/JCIN.2021.9475121"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2021.3126021"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP40776.2020.9053740"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TCOMM.2019.2944169"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/ICC40277.2020.9149138"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2021.3088655"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.002.2000334"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TCCN.2022.3140788"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2019.2961673"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2019.2946245"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2020.2981904"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.2974748"},{"key":"ref41","first-page":"2021","article-title":"FedPAQ: A communication-efficient federated learning method with periodic averaging and quantization","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Reisizadeh"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3038407"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2020.3009406"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2016.2594031"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2015.2443040"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00919"},{"key":"ref47","first-page":"5693","article-title":"Parallel restarted SGD with faster con- vergence and less communication: Demystifying why model averaging works for deep learning","volume-title":"Proc. AAAI Conf. Artif. Intell.","author":"Yu","year":"2019"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966217"},{"key":"ref50","article-title":"Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms","author":"Xiao","year":"2017"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/MWC.011.2000501"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3024860"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2019.2935810"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.3390\/s20102753"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.2014.6736761"},{"key":"ref56","article-title":"UMAP: Uniform manifold approximation and projection for dimension reduction","author":"McInnes","year":"2018"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1561\/2200000090"}],"container-title":["IEEE Transactions on Network Science and Engineering"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6488902\/9933169\/09851495.pdf?arnumber=9851495","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T02:36:05Z","timestamp":1706063765000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9851495\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,1]]},"references-count":57,"journal-issue":{"issue":"6"},"URL":"https:\/\/doi.org\/10.1109\/tnse.2022.3196463","relation":{},"ISSN":["2327-4697","2334-329X"],"issn-type":[{"value":"2327-4697","type":"electronic"},{"value":"2334-329X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,11,1]]}}}