{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T05:14:09Z","timestamp":1725254049274},"reference-count":71,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"12","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1933101","51875436","91960106"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2019YFF0302204"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Liuzhou Natural Science Foundation","award":["2021AAA0112"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["XZY022020007","XZY022021006"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Neural Netw. Learning Syst."],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1109\/tnnls.2022.3162949","type":"journal-article","created":{"date-parts":[[2022,4,12]],"date-time":"2022-04-12T19:30:23Z","timestamp":1649791823000},"page":"9966-9980","source":"Crossref","is-referenced-by-count":7,"title":["Unsupervised Multimodal Anomaly Detection With Missing Sources for Liquid Rocket Engine"],"prefix":"10.1109","volume":"34","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5895-7049","authenticated-orcid":false,"given":"Yong","family":"Feng","sequence":"first","affiliation":[{"name":"State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9677-0090","authenticated-orcid":false,"given":"Zijun","family":"Liu","sequence":"additional","affiliation":[{"name":"Science and Technology on Liquid Rocket Engine Laboratory, Xi’an Aerospace Propulsion Institute, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9805-9849","authenticated-orcid":false,"given":"Jinglong","family":"Chen","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9366-2403","authenticated-orcid":false,"given":"Haixin","family":"Lv","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9013-3071","authenticated-orcid":false,"given":"Jun","family":"Wang","sequence":"additional","affiliation":[{"name":"Science and Technology on Liquid Rocket Engine Laboratory, Xi’an Aerospace Propulsion Institute, Xi’an, China"}]},{"given":"Xinwei","family":"Zhang","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.actaastro.2019.03.075"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.2514\/1.42783"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2932769"},{"key":"ref4","first-page":"219","article-title":"One-class classification for anomaly detection in wire ropes with Gaussian processes in a few lines of code","volume-title":"Proc. Conf. Mach. Vis. Appl. (MVA)","author":"Rodner"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/DCC.2017.32"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-20893-6_39"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-59050-9_12"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLA.2016.0040"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s10514-018-9733-6"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/BigData50022.2020.9378419"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2798607"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2015.2417501"},{"key":"ref13","article-title":"Deep learning for anomaly detection: A survey","author":"Chalapathy","year":"2021","journal-title":"arXiv:1901.03407"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICAIBD.2018.8396200"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-10925-7_11"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.2017.2746762"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2966744"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.actaastro.2020.11.035"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2961742"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.actaastro.2020.08.019"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3086900"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3097437"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.3390\/s19081826"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2017.2738401"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.arcontrol.2018.09.003"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-93040-4_21"},{"key":"ref27","first-page":"5689","article-title":"GAIN: Missing data imputation using generative adversarial nets","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Yoon"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2021.04.010"},{"key":"ref29","first-page":"5580","article-title":"Multimodal generative models for scalable weakly-supervised learning","volume-title":"Proc. 32nd Int. Conf. Neural Inf. Process. Syst.","author":"Wu"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.dsp.2020.102657"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.02.012"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/NSS.2009.60"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.compchemeng.2009.08.007"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00803"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2014.09.086"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2016.03.028"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2016.10.010"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TBIOM.2021.3050036"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/WTS.2018.8363930"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/j.jprocont.2020.06.001"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/IGARSS39084.2020.9324636"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2980749"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2020.102622"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ATIT49449.2019.9030505"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ICFPT47387.2019.00072"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2018.2801475"},{"key":"ref47","article-title":"LSTM-based encoder-decoder for multi-sensor anomaly detection","author":"Malhotra","year":"2016","journal-title":"arXiv:1607.00148"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/ICDMW.2019.00152"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/IGARSS39084.2020.9323688"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2979049"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1145\/3439950"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2015.2460697"},{"key":"ref53","first-page":"689","article-title":"Multimodal deep learning","volume-title":"Proc. 28th Int. Conf. Mach. Learn.","author":"Ngiam"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1007\/s10489-019-01430-7"},{"key":"ref55","article-title":"Learning representations for multimodal data with deep belief nets","volume-title":"Proc. ICML Represent. Learn. Workshop","author":"Srivastava"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3059519"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2015.2476658"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2015.2487860"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i3.16330"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1145\/3284750"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.169"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390294"},{"key":"ref64","first-page":"3939","article-title":"Imaging time-series to improve classification and imputation","volume-title":"Proc. 24th Int. Conf. Artif. Intell.","author":"Wang"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1051\/itmconf\/20182300037"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2008.17"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2019.8851808"},{"key":"ref68","first-page":"4393","article-title":"Deep one-class classification","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Ruff"},{"key":"ref69","first-page":"1","article-title":"Adam: A method for stochastic optimization","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Kingma"},{"key":"ref70","first-page":"2579","article-title":"Visualizing high-dimensional data using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2021.3062597"}],"container-title":["IEEE Transactions on Neural Networks and Learning Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/5962385\/10336252\/09755996.pdf?arnumber=9755996","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,16]],"date-time":"2024-02-16T19:11:55Z","timestamp":1708110715000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9755996\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":71,"journal-issue":{"issue":"12"},"URL":"https:\/\/doi.org\/10.1109\/tnnls.2022.3162949","relation":{},"ISSN":["2162-237X","2162-2388"],"issn-type":[{"value":"2162-237X","type":"print"},{"value":"2162-2388","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,12]]}}}