{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T17:14:18Z","timestamp":1726334058495},"reference-count":73,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"11","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001821","name":"Vienna Science and Technology Fund","doi-asserted-by":"publisher","award":["MA16-021"],"id":[{"id":"10.13039\/501100001821","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010470","name":"Fonds zur F\u00f6rderung der wissenschaftlichen Forschung (FWF) START","doi-asserted-by":"publisher","award":["Y 1235"],"id":[{"id":"10.13039\/501100010470","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Research Commission of the Universit\u00e4t Sankt Gallen"},{"DOI":"10.13039\/501100001711","name":"Swiss National Science Foundation","doi-asserted-by":"publisher","award":["200021_175801\/1"],"id":[{"id":"10.13039\/501100001711","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Research Commission of the Universit\u00e4t Sankt Gallen"},{"DOI":"10.13039\/501100001711","name":"Swiss National Science Foundation","doi-asserted-by":"publisher","award":["200021_175801\/1"],"id":[{"id":"10.13039\/501100001711","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001665","name":"French Agence Nationale de la Recherche (ANR) through the Brain Inspired Photonic Processor (\u201cBIPHOPROC\u201d) Project","doi-asserted-by":"publisher","award":["ANR-14-OHRI-0002-02"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]},{"name":"ETH Foundation"},{"DOI":"10.13039\/501100001711","name":"Swiss National Science Foundation, \u201cMachine Learning in Finance\u201d","doi-asserted-by":"publisher","award":["179114"],"id":[{"id":"10.13039\/501100001711","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Neural Netw. Learning Syst."],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1109\/tnnls.2021.3076777","type":"journal-article","created":{"date-parts":[[2021,5,26]],"date-time":"2021-05-26T21:19:52Z","timestamp":1622063992000},"page":"6321-6330","source":"Crossref","is-referenced-by-count":14,"title":["Discrete-Time Signatures and Randomness in Reservoir Computing"],"prefix":"10.1109","volume":"33","author":[{"given":"Christa","family":"Cuchiero","sequence":"first","affiliation":[{"name":"Department of Statistics and Operations Research, University of Vienna, Vienna, Austria"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3367-2455","authenticated-orcid":false,"given":"Lukas","family":"Gonon","sequence":"additional","affiliation":[{"name":"LMU Mathematics Institute, Ludwig-Maximilians-Universität München, Munich, Germany"}]},{"given":"Lyudmila","family":"Grigoryeva","sequence":"additional","affiliation":[{"name":"Department of Mathematics and Statistics, Universität Konstanz, Konstanz, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5412-9622","authenticated-orcid":false,"given":"Juan-Pablo","family":"Ortega","sequence":"additional","affiliation":[{"name":"Nanyang Technological University, Singapore"}]},{"given":"Josef","family":"Teichmann","sequence":"additional","affiliation":[{"name":"ETH Zürich, Zürich, Switzerland"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1162\/089976600300015123"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1162\/089976602760407955"},{"issue":"1","key":"ref3","first-page":"39","article-title":"The \u2018liquid compute\u2019: A novel strategy for real-time computing on time series","volume":"8","author":"Natschl\u00e4ger","year":"2002","journal-title":"Special Issue Found. Inf. Process. TELEMATIK"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.jphysparis.2005.09.020"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.0020165"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/82.331544"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/82.331544"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1126\/science.1091277"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.cosrev.2009.03.005"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.03.004"},{"key":"ref11","article-title":"Memory and information processing in recurrent neural networks","volume-title":"arXiv:1604.06929","author":"Goudarzi","year":"2016"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.96.032308"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1063\/1.5010300"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.120.024102"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1063\/1.5039508"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms1476"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2010.2089641"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2011.2161771"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1364\/oe.20.003241"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1038\/srep00287"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms2368"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms4541"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1364\/OPTICA.2.000438"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1364\/OE.26.007955"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.1992.230622"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2013.6638947"},{"key":"ref27","article-title":"How to construct deep recurrent neural networks","volume-title":"arXiv:1312.6026","author":"Pascanu","year":"2013"},{"key":"ref28","article-title":"Recurrent neural network regularization","volume-title":"arXiv:1409.2329","author":"Zaremba","year":"2014"},{"key":"ref29","first-page":"1","article-title":"Random features for large-scale kernel machines","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Rahimi"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2005.12.126"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1115\/1.3662552"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TAES.1966.4501892"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1117\/12.280797"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2020.05.013"},{"key":"ref35","article-title":"Approximation error estimates for random neural networks and reservoir systems","volume-title":"arXiv:2002.05933","author":"Gonon","year":"2020"},{"issue":"24","key":"ref36","first-page":"1","article-title":"Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems","volume":"19","author":"Grigoryeva","year":"2018","journal-title":"J. Mach. Learn. Res."},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2899649"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.4171\/RMI\/240"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.2307\/1969671"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9904-1977-14320-6"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1016\/j.aim.2016.02.011"},{"key":"ref42","first-page":"1","article-title":"Learning from the past, predicting the statistics for the future, learning an evolving system","volume-title":"arXiv:1309.0260","author":"Levin","year":"2013"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1214\/14-BJPS241"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2016.7900261"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ASAR.2018.8480300"},{"key":"ref46","article-title":"Rough paths, signatures and the modelling of functions on streams","volume-title":"arXiv:1405.4537","author":"Lyons","year":"2014"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1145\/2640087.2644157"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/ICDAR.2015.7333821"},{"key":"ref49","first-page":"3105","article-title":"Deep signature transforms","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Bonnier"},{"key":"ref50","article-title":"Nonparametric pricing and hedging of exotic derivatives","volume-title":"arXiv:1905.00711","author":"Lyons","year":"2019"},{"issue":"31","key":"ref51","first-page":"1","article-title":"Kernels for sequentially ordered data","volume":"20","author":"Kir\u00e1ly","year":"2019","journal-title":"J. Mach. Learn. Res."},{"key":"ref52","article-title":"Approximation of dynamics by randomized signature","author":"Cuchiero","year":"2021","journal-title":"In preparation"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1090\/conm\/026\/737400"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511794308"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2018.08.025"},{"issue":"179","key":"ref56","first-page":"1","article-title":"Differentiable reservoir computing","volume":"20","author":"Grigoryeva","year":"2019","journal-title":"J. Mach. Learn. Res."},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2021.01.025"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1090\/S0025-5718-1972-0305099-X"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1016\/j.laa.2015.02.012"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/TCS.1985.1085649"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.10073"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1016\/0095-8956(88)90043-3"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1145\/276698.276876"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1016\/S0022-0000(03)00025-4"},{"key":"ref65","first-page":"341","article-title":"A sparse Johnson\u2013Lindenstrauss transform","volume-title":"Proc. 42nd ACM Symp. Theory Comput.","author":"Dasgupta"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.20218"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511794308.006"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.2307\/1912773"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1016\/0304-4076(86)90063-1"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1002\/9780470670057"},{"issue":"240","key":"ref71","first-page":"1","article-title":"Risk bounds for reservoir computing","volume":"21","author":"Gonon","year":"2020","journal-title":"J. Mach. Learn. Res."},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1016\/j.physd.2020.132721"},{"key":"ref73","volume-title":"Martingale Limit Theory and Its Application","author":"Hall","year":"1980"}],"container-title":["IEEE Transactions on Neural Networks and Learning Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/5962385\/9931397\/09442205.pdf?arnumber=9442205","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T23:59:30Z","timestamp":1704844770000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9442205\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":73,"journal-issue":{"issue":"11"},"URL":"https:\/\/doi.org\/10.1109\/tnnls.2021.3076777","relation":{},"ISSN":["2162-237X","2162-2388"],"issn-type":[{"value":"2162-237X","type":"print"},{"value":"2162-2388","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,11]]}}}