{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:14:49Z","timestamp":1732040089819},"reference-count":52,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"4","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/EU.html"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["GRK 2277"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"name":"\u201cStatistical Modeling in Psychology\u201d"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Neural Netw. Learning Syst."],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1109\/tnnls.2020.3042395","type":"journal-article","created":{"date-parts":[[2020,12,18]],"date-time":"2020-12-18T20:55:35Z","timestamp":1608324935000},"page":"1452-1466","source":"Crossref","is-referenced-by-count":59,"title":["BayesFlow: Learning Complex Stochastic Models With Invertible Neural Networks"],"prefix":"10.1109","volume":"33","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6702-9559","authenticated-orcid":false,"given":"Stefan T.","family":"Radev","sequence":"first","affiliation":[{"name":"Department of Quantitative Research Methods, Institute of Psychology, Heidelberg University, Heidelberg, Germany"}]},{"given":"Ulf K.","family":"Mertens","sequence":"additional","affiliation":[{"name":"Department of Quantitative Research Methods, Institute of Psychology, Heidelberg University, Heidelberg, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4499-3660","authenticated-orcid":false,"given":"Andreas","family":"Voss","sequence":"additional","affiliation":[{"name":"Department of Quantitative Research Methods, Institute of Psychology, Heidelberg University, Heidelberg, Germany"}]},{"given":"Lynton","family":"Ardizzone","sequence":"additional","affiliation":[{"name":"Visual Learning Lab, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6036-1287","authenticated-orcid":false,"given":"Ullrich","family":"Kothe","sequence":"additional","affiliation":[{"name":"Visual Learning Lab, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany"}]}],"member":"263","reference":[{"key":"ref1","first-page":"265","article-title":"Tensorflow: A system for large-scale machine learning","volume-title":"Proc. 12th USENIX Symp. Operating Syst. Des. Implement.","author":"Abadi"},{"key":"ref2","article-title":"Analyzing inverse problems with invertible neural networks","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Ardizzone"},{"key":"ref3","article-title":"Guided image generation with conditional invertible neural networks","author":"Ardizzone","year":"2019","journal-title":"arXiv:1907.02392"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1903070116"},{"key":"ref5","article-title":"Greedy inference with structure-exploiting lazy maps","author":"Brennan","year":"2019","journal-title":"arXiv:1906.00031"},{"key":"ref6","article-title":"Probabilistic symmetries and invariant neural networks","author":"Bloem-Reddy","year":"2019","journal-title":"arXiv:1901.06082"},{"key":"ref7","volume-title":"Introduction to Bayesian Statistics","author":"Bolstad","year":"2016"},{"key":"ref8","first-page":"5622","article-title":"Fast greedy map inference for determinantal point process to improve recommendation diversity","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Chen"},{"key":"ref9","article-title":"The frontier of simulation-based inference","author":"Cranmer","year":"2019","journal-title":"arXiv:1911.01429"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.tree.2010.04.001"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ROBOT.2002.1014806"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i9.16997"},{"key":"ref13","article-title":"Density estimation using real NVP","author":"Dinh","year":"2016","journal-title":"arXiv:1605.08803"},{"key":"ref14","first-page":"3","article-title":"Towards an empirical foundation for assessing Bayesian optimization of hyperparameters","volume-title":"Proc. NIPS Workshop Bayesian Optim. Theory Pract.","volume":"10","author":"Eggensperger"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1162\/089976600300015015"},{"key":"ref16","article-title":"Automatic posterior transformation for likelihood-free inference","author":"Greenberg","year":"2019","journal-title":"arXiv:1905.07488"},{"key":"ref17","first-page":"723","article-title":"A kernel two-sample test","volume":"13","author":"Gretton","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11829"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2007.366913"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1137\/s0036144500371907"},{"key":"ref21","article-title":"Conditional recurrent flow: Conditional generation of longitudinal samples with applications to neuroimaging","author":"Hwang","year":"2018","journal-title":"arXiv:1811.09897"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.5705\/ss.202015.0340"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.2307\/j.ctvcm4gk0"},{"key":"ref24","first-page":"1","article-title":"Auto-encoding variational Bayes","volume":"1050","author":"Kingma","year":"2014","journal-title":"Statistica"},{"key":"ref25","first-page":"10215","article-title":"Glow: Generative flow with invertible $1{\\times}1$\n convolutions","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Kingma"},{"key":"ref26","first-page":"4743","article-title":"Improved variational inference with inverse autoregressive flow","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Kingma"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/bty361"},{"key":"ref28","first-page":"6169","article-title":"Resnet with one-neuron hidden layers is a universal approximator","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Lin"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref30","first-page":"1289","article-title":"Flexible statistical inference for mechanistic models of neural dynamics","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Lueckmann"},{"key":"ref31","volume-title":"Deep Learning Methods for Likelihood-Free Inference: Approximating the Posterior Distribution With Convolutional Neural Networks","author":"Mertens","year":"2019"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0193981"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1007181"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmp.2016.12.001"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2018.00294"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1038\/nature14236"},{"key":"ref37","first-page":"1028","article-title":"Fast $\\varepsilon$\n-free inference of simulation models with Bayesian conditional density estimation","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Papamakarios"},{"key":"ref38","article-title":"Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows","author":"Papamakarios","year":"2018","journal-title":"arXiv:1805.07226"},{"key":"ref39","first-page":"398","article-title":"K2-ABC: Approximate Bayesian computation with kernel embeddings","volume-title":"Proc. Int. Conf. Artif. Intell. Statist.","author":"Park"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1137\/17M1134640"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1111\/bmsp.12159"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1162\/neco.2008.12-06-420"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/bty867"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1201\/b10905-13"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1002803"},{"key":"ref46","article-title":"Validating Bayesian inference algorithms with simulation-based calibration","author":"Talts","year":"2018","journal-title":"arXiv:1804.06788"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.3758\/s13423-013-0530-0"},{"key":"ref48","first-page":"5998","article-title":"Attention is all you need","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Vaswani"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.3758\/s13423-018-1560-4"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1201\/b11812"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1038\/nature09319"},{"key":"ref52","article-title":"What can neural networks reason about?","author":"Xu","year":"2019","journal-title":"arXiv:1905.13211"}],"container-title":["IEEE Transactions on Neural Networks and Learning Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/5962385\/9749160\/09298920.pdf?arnumber=9298920","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T23:26:57Z","timestamp":1704842817000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9298920\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":52,"journal-issue":{"issue":"4"},"URL":"https:\/\/doi.org\/10.1109\/tnnls.2020.3042395","relation":{},"ISSN":["2162-237X","2162-2388"],"issn-type":[{"value":"2162-237X","type":"print"},{"value":"2162-2388","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,4]]}}}