{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T11:08:17Z","timestamp":1743764897592,"version":"3.37.3"},"reference-count":40,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"3","license":[{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Key-Area Research and Development Program of Guangdong Province, China","award":["2020B010165004"]},{"name":"Hong Kong Research Grants Council (RGC) Theme-Based Research Scheme","award":["T42-409\/18-R"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1813204"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Shenzhen-Hong Kong (Shenzhen-HK) Collaborative Development Zone"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Med. Imaging"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1109\/tmi.2021.3119385","type":"journal-article","created":{"date-parts":[[2021,10,11]],"date-time":"2021-10-11T20:15:44Z","timestamp":1633983344000},"page":"621-632","source":"Crossref","is-referenced-by-count":53,"title":["Learning With Privileged Multimodal Knowledge for Unimodal Segmentation"],"prefix":"10.1109","volume":"41","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6040-6833","authenticated-orcid":false,"given":"Cheng","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3416-9950","authenticated-orcid":false,"given":"Qi","family":"Dou","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3775-3877","authenticated-orcid":false,"given":"Yueming","family":"Jin","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3921-5960","authenticated-orcid":false,"given":"Quande","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3055-5034","authenticated-orcid":false,"given":"Pheng Ann","family":"Heng","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2014.2377694"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/i.media.2016.10.004"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00931-1_73"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2538465"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.398"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2878669"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_54"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32245-8_9"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32248-9_18"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2018.8363653"},{"key":"ref11","article-title":"Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs","author":"Orbes-Arteaga","year":"2018","journal-title":"arXiv:1808.06519"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2868977"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32248-9_50"},{"key":"ref14","article-title":"Disentangle, align and fuse for multimodal and semi-supervised image segmentation","author":"Chartsias","year":"2019","journal-title":"arXiv:1911.04417"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-33391-1_19"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10443-0_39"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24553-9_65"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2017.2764326"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2945521"},{"key":"ref20","first-page":"1","article-title":"Unifying distillation and privileged information","volume-title":"Proc. 4th Int. Conf. Learn. Represent.","author":"Lopez-Paz"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2009.06.042"},{"key":"ref22","article-title":"Distilling the knowledge in a neural network","author":"Hinton","year":"2015","journal-title":"arXiv:1503.02531"},{"key":"ref23","article-title":"Contrastive representation distillation","author":"Tian","year":"2019","journal-title":"arXiv:1910.10699"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2952939"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-59710-8_75"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2869576"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-20351-1_32"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01237-3_7"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2019.2929038"},{"key":"ref30","article-title":"RGB-based 3D hand pose estimation via privileged learning with depth images","author":"Yuan","year":"2018","journal-title":"arXiv:1811.07376"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2018.00066"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2963882"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5421"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2006.100"},{"key":"ref35","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","volume-title":"Proc. 37th Int. Conf. Mach. Learn.","author":"Chen"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/96"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2972701"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_67"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1038\/sdata.2017.117"},{"key":"ref40","article-title":"Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge","author":"Bakas","year":"2018","journal-title":"arXiv:1811.02629"}],"container-title":["IEEE Transactions on Medical Imaging"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/42\/9724621\/09567675.pdf?arnumber=9567675","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T22:43:23Z","timestamp":1705013003000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9567675\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3]]},"references-count":40,"journal-issue":{"issue":"3"},"URL":"https:\/\/doi.org\/10.1109\/tmi.2021.3119385","relation":{},"ISSN":["0278-0062","1558-254X"],"issn-type":[{"type":"print","value":"0278-0062"},{"type":"electronic","value":"1558-254X"}],"subject":[],"published":{"date-parts":[[2022,3]]}}}