{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:38:47Z","timestamp":1732037927840},"reference-count":57,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"5","license":[{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","award":["ETS Research Chair on Artificial Intelligence in Medical Imaging"],"id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Med. Imaging"],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1109\/tmi.2018.2878669","type":"journal-article","created":{"date-parts":[[2018,10,30]],"date-time":"2018-10-30T19:23:57Z","timestamp":1540927437000},"page":"1116-1126","source":"Crossref","is-referenced-by-count":353,"title":["HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation"],"prefix":"10.1109","volume":"38","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2436-7750","authenticated-orcid":false,"given":"Jose","family":"Dolz","sequence":"first","affiliation":[]},{"given":"Karthik","family":"Gopinath","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Yuan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3352-7533","authenticated-orcid":false,"given":"Herve","family":"Lombaert","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9162-9650","authenticated-orcid":false,"given":"Christian","family":"Desrosiers","sequence":"additional","affiliation":[]},{"given":"Ismail","family":"Ben Ayed","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","author":"li","year":"2017","journal-title":"H-DenseUNet Hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_39"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.11.040"},{"key":"ref30","first-page":"2949","article-title":"Multimodal learning with deep Boltzmann machines","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref37","first-page":"4278","article-title":"Inception-v4, inception-resnet and the impact of residual connections on learning","author":"szegedy","year":"2017","journal-title":"Proc AAAI"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2781233"},{"key":"ref35","author":"zagoruyko","year":"2016","journal-title":"Wide residual networks"},{"key":"ref34","author":"larsson","year":"2016","journal-title":"Fractalnet Ultra-deep neural networks without residuals"},{"key":"ref28","first-page":"13","article-title":"Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI","author":"kamnitsas","year":"2015","journal-title":"Proc MICCAI Ischemic Stroke Lesion Segmentation Challenge"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1002\/mp.12593"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2548501"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2011.10.011"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1053\/j.semnuclmed.2009.03.002"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2006.09.016"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-59050-9_47"},{"key":"ref21","first-page":"1","article-title":"MSSEG challenge proceedings: Multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure","author":"commowick","year":"2016","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.artmed.2016.09.001"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2017.04.034"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2017.04.039"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2017.06.074"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_38"},{"key":"ref51","first-page":"424","article-title":"3D U-Net: Learning dense volumetric segmentation from sparse annotation","author":"\u00e7i\u00e7cek","year":"2016","journal-title":"Proc MICCAI Conf"},{"key":"ref57","author":"penny","year":"2011","journal-title":"Statistical Parametric Mapping The Analysis of Functional Brain Images"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2009.2035616"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.2337\/db12-1644"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2017.11.016"},{"key":"ref53","first-page":"2998","article-title":"Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation","author":"stollenga","year":"2015","journal-title":"Proc NIPS"},{"key":"ref52","author":"pawlowski","year":"2017","journal-title":"DLTK State of the art reference implementations for deep learning on medical images"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2009.04.068"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2011.06.064"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66185-8_33"},{"key":"ref12","first-page":"1","article-title":"Automatic segmentation of neonatal brain MRI using atlas based segmentation and machine learning approach","author":"srhoj-egekher","year":"2012","journal-title":"Proc of MiCCAi Grand Challenge Neonatal Brain Segmentation"},{"key":"ref13","first-page":"28","article-title":"An atlas-based method for neonatal MR brain tissue segmentation","author":"wang","year":"2012","journal-title":"Proc of MiCCAi Grand Challenge Neonatal Brain Segmentation"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2013.08.008"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2014.12.061"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2016.7493515"},{"key":"ref17","author":"dolz","year":"2017","journal-title":"Deep cnn ensembles and suggestive annotations for infant brain mri segmentation"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/813696"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2017.04.041"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46723-8_54"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2014.2377694"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66179-7_33"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2016.10.004"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2006.1625029"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2005.05.007"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.2307\/1932409"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1203\/PDR.0b013e31815ed071"},{"key":"ref46","author":"zhang","year":"2017","journal-title":"ShuffleNet An Extremely Efficient Convolutional Neural Network for Mobile Devices"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ICME.2017.8019402"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.123"},{"key":"ref47","author":"alain","year":"2016","journal-title":"Understanding intermediate layers using linear classifier probes"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2018.8363651"},{"key":"ref41","author":"chen","year":"2018","journal-title":"MRI tumor segmentation with densely connected 3D CNN"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.469"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"}],"container-title":["IEEE Transactions on Medical Imaging"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/42\/8704227\/08515234.pdf?arnumber=8515234","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T20:51:21Z","timestamp":1657745481000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8515234\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5]]},"references-count":57,"journal-issue":{"issue":"5"},"URL":"https:\/\/doi.org\/10.1109\/tmi.2018.2878669","relation":{},"ISSN":["0278-0062","1558-254X"],"issn-type":[{"value":"0278-0062","type":"print"},{"value":"1558-254X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,5]]}}}