{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T19:40:06Z","timestamp":1709408406035},"reference-count":67,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. on Mobile Comput."],"published-print":{"date-parts":[[2022]]},"DOI":"10.1109\/tmc.2022.3208265","type":"journal-article","created":{"date-parts":[[2022,9,21]],"date-time":"2022-09-21T19:29:08Z","timestamp":1663788548000},"page":"1-16","source":"Crossref","is-referenced-by-count":3,"title":["$\\mathtt {Radar}$: Adversarial Driving Style Representation Learning With Data Augmentation"],"prefix":"10.1109","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0211-877X","authenticated-orcid":false,"given":"Zhidan","family":"Liu","sequence":"first","affiliation":[{"name":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"}]},{"given":"Junhong","family":"Zheng","sequence":"additional","affiliation":[{"name":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"}]},{"given":"Jinye","family":"Lin","sequence":"additional","affiliation":[{"name":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5897-4401","authenticated-orcid":false,"given":"Liang","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Computer Science, Northwestern Polytechnical University, Xi'an, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2216-0737","authenticated-orcid":false,"given":"Kaishun","family":"Wu","sequence":"additional","affiliation":[{"name":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2017\/222"},{"key":"ref57","first-page":"975","article-title":"Probability estimates for multi-class classification by pairwise coupling","volume":"5","author":"wu","year":"2004","journal-title":"J Mach Learn Res"},{"key":"ref12","article-title":"Characterizing driving styles with deep learning","author":"dong","year":"2016"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2021\/631"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.3044678"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2017.2772253"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1186\/s40537-018-0118-7"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.2018.1700242"},{"key":"ref53","first-page":"2837","article-title":"Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance","volume":"11","author":"vinh","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.3040386"},{"key":"ref11","first-page":"1","article-title":"Good semi-supervised learning that requires a bad GAN","author":"dai","year":"2017","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219985"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1155\/2018\/9702730"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.4271\/2017-01-1372"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2020.2989732"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467114"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2018.2836308"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1126\/science.1136800"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1145\/3478108"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298682"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2021.3065900"},{"key":"ref45","first-page":"1","article-title":"Semi-supervised learning with generative adversarial networks","author":"odena","year":"2016","journal-title":"Proc Workshop Data Efficient Mach Learn"},{"key":"ref48","first-page":"2234","article-title":"Improved techniques for training GANs","author":"salimans","year":"2016","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403183"},{"key":"ref42","article-title":"Driving style representation in convolutional recurrent neural network model of driver identification","author":"moosavi","year":"2021"},{"key":"ref41","first-page":"878","article-title":"Trajectory-user linking with attentive recurrent network","author":"miao","year":"2020","journal-title":"Proc Int Conf Autonomous Agents and Multiagent Systems"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1145\/3450267.3450541"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1145\/1653771.1653818"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/MASS52906.2021.00063"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2013.2238531"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TBDATA.2021.3063048"},{"key":"ref9","first-page":"1478","article-title":"Crowddeliver: Planning city-wide package delivery paths leveraging the crowd of taxis","volume":"18","author":"chen","year":"2017","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/MITS.2014.2328673"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2926639"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2017.2771231"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2940481"},{"key":"ref40","first-page":"512","article-title":"Boosting algorithms as gradient descent","author":"mason","year":"2000","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE48307.2020.00088"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1155\/2014\/569109"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.2018.1700411"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2016.2514519"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2015.7139555"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/3269206.3271762"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2021.3060787"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.2974669"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.01293"},{"key":"ref1","year":"0"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2018.2873642"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-73194-6_33"},{"key":"ref24","first-page":"139","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.2987877"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2021.3049533"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC.2016.7795670"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00298"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/3131944.3133939"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/445"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2021.3057645"},{"key":"ref22","first-page":"1","article-title":"Adversarial human trajectory learning for trip recommendation","author":"gao","year":"2021","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/446"},{"key":"ref21","first-page":"1","article-title":"RobustTAD: Robust time series anomaly detection via decomposition and convolutional neural networks","author":"gao","year":"2020","journal-title":"Proc 6th ACM KDD Workshop Mining Learn Time Ser"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1145\/2743025"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3094229"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/BigData.2018.8622491"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0254841"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1145\/3323679.3326500"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN48605.2020.9206609"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2016.2618873"}],"container-title":["IEEE Transactions on Mobile Computing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/7755\/4358975\/09896871.pdf?arnumber=9896871","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,3]],"date-time":"2023-11-03T22:30:20Z","timestamp":1699050620000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9896871\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"references-count":67,"URL":"https:\/\/doi.org\/10.1109\/tmc.2022.3208265","relation":{},"ISSN":["1536-1233","1558-0660","2161-9875"],"issn-type":[{"value":"1536-1233","type":"print"},{"value":"1558-0660","type":"electronic"},{"value":"2161-9875","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022]]}}}