{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,13]],"date-time":"2023-12-13T03:34:28Z","timestamp":1702438468332},"reference-count":39,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"1","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61922087","61906201","62036013","62006238"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"NSF of Hunan Province","award":["2020JJ5669"]},{"name":"NSF for Distinguished Young Scholars of Hunan Province","award":["2019JJ20020"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Knowl. Data Eng."],"published-print":{"date-parts":[[2023,1,1]]},"DOI":"10.1109\/tkde.2021.3076457","type":"journal-article","created":{"date-parts":[[2021,4,29]],"date-time":"2021-04-29T19:49:27Z","timestamp":1619725767000},"page":"877-890","source":"Crossref","is-referenced-by-count":1,"title":["Semi-Supervised Learning With Label Proportion"],"prefix":"10.1109","volume":"35","author":[{"given":"Ningzhao","family":"Sun","sequence":"first","affiliation":[{"name":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4328-4627","authenticated-orcid":false,"given":"Tingjin","family":"Luo","sequence":"additional","affiliation":[{"name":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan, China"}]},{"given":"Wenzhang","family":"Zhuge","sequence":"additional","affiliation":[{"name":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0924-5683","authenticated-orcid":false,"given":"Hong","family":"Tao","sequence":"additional","affiliation":[{"name":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9335-0469","authenticated-orcid":false,"given":"Chenping","family":"Hou","sequence":"additional","affiliation":[{"name":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7357-0053","authenticated-orcid":false,"given":"Dewen","family":"Hu","sequence":"additional","affiliation":[{"name":"College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China"}]}],"member":"263","reference":[{"key":"ref39","first-page":"2979","article-title":"Multi-stage multi-task feature learning","volume":"14","author":"gong","year":"2013","journal-title":"J Mach Learn Res"},{"key":"ref38","first-page":"675","article-title":"Semi-supervised learning with very few labeled training examples","author":"zhou","year":"2007","journal-title":"Proc 22nd Nat Conf Artif Intell"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/1989734.1989736"},{"key":"ref32","first-page":"745","article-title":"Clusterpath: An algorithm for clustering using convex fusion penalties","author":"hocking","year":"2011","journal-title":"Proc 28th Int Conf Mach Learn"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.dam.2012.05.025"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1561\/2200000039"},{"key":"ref37","first-page":"1871","article-title":"Liblinear: A library for large linear classification","volume":"9","author":"fan","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1038\/sj.jors.2600425"},{"key":"ref35","volume":"58","author":"fujishige","year":"2005","journal-title":"Submodular Functions and Optimization"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2004.60"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2010.09.002"},{"key":"ref11","first-page":"633","article-title":"A new classification method based on semi-supervised support vector machine","author":"jiang","year":"2014","journal-title":"Proc Int Conf Hum Centered Comput"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/431"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2018.2804326"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1093\/nsr\/nwx106"},{"key":"ref15","first-page":"571","article-title":"A mixture of experts classifier with learning based on both labelled and unlabelled data","author":"miller","year":"1997","journal-title":"Advances in neural information processing systems"},{"key":"ref16","first-page":"764","article-title":"A hybrid generative\/discriminative approach to semi-supervised classifier design","author":"fujino","year":"2005","journal-title":"Proc 20th Nat Conf Artif Intell"},{"key":"ref17","first-page":"321","article-title":"Learning with local and global consistency","author":"zhou","year":"2003","journal-title":"Proc 16th Int Conf Neural Inf Process Syst"},{"key":"ref18","first-page":"19","article-title":"Learning from labeled and unlabeled data using graph mincuts","author":"blum","year":"2001","journal-title":"Proc 18th Int Conf Mach Learn"},{"key":"ref19","first-page":"57","article-title":"Semi-supervised classification by low density separation","author":"chapelle","year":"2005","journal-title":"Proc 10th Int Workshop Artif Intell Statist"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-009-0305-8"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2013.39"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2010.35"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.250598"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3322\/caac.21551"},{"key":"ref29","first-page":"217","article-title":"Branch and bound for semi-supervised support vector machines","author":"chapelle","year":"2007","journal-title":"Proc Neural Inf Process Syst"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.3322\/caac.21492"},{"key":"ref8","article-title":"Semi-supervised learning literature survey","author":"zhu","year":"2005"},{"key":"ref7","first-page":"912","article-title":"Semi-supervised learning using gaussian fields and harmonic functions","author":"zhu","year":"2003","journal-title":"Proc 20th Int Conf Mach Learn"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2012.88"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-01548-9"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2008.79"},{"key":"ref20","first-page":"368","article-title":"Semi-supervised support vector machines","author":"bennett","year":"1999","journal-title":"Proc Neural Inf Process Syst"},{"key":"ref22","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1109\/TPAMI.2014.2299812","article-title":"Towards making unlabeled data never hurt","volume":"37","author":"li","year":"2015","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007692713085"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511804441"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.3724\/SP.J.1001.2013.04483"},{"key":"ref26","first-page":"203","article-title":"Optimization techniques for semi-supervised support vector machines","volume":"9","author":"chapelle","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1561\/2200000016"}],"container-title":["IEEE Transactions on Knowledge and Data Engineering"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/69\/9973432\/09419731.pdf?arnumber=9419731","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,12]],"date-time":"2022-12-12T16:27:20Z","timestamp":1670862440000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9419731\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,1]]},"references-count":39,"journal-issue":{"issue":"1"},"URL":"https:\/\/doi.org\/10.1109\/tkde.2021.3076457","relation":{},"ISSN":["1041-4347","1558-2191","2326-3865"],"issn-type":[{"value":"1041-4347","type":"print"},{"value":"1558-2191","type":"electronic"},{"value":"2326-3865","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,1,1]]}}}