{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T15:43:35Z","timestamp":1725378215839},"reference-count":33,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"6","license":[{"start":{"date-parts":[[2018,6,1]],"date-time":"2018-06-01T00:00:00Z","timestamp":1527811200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Knowl. Data Eng."],"published-print":{"date-parts":[[2018,6,1]]},"DOI":"10.1109\/tkde.2018.2790928","type":"journal-article","created":{"date-parts":[[2018,1,8]],"date-time":"2018-01-08T19:44:16Z","timestamp":1515440656000},"page":"1164-1177","source":"Crossref","is-referenced-by-count":24,"title":["Sparse Feature Attacks in Adversarial Learning"],"prefix":"10.1109","volume":"30","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6250-7988","authenticated-orcid":false,"given":"Zhizhou","family":"Yin","sequence":"first","affiliation":[]},{"given":"Fei","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6565-5815","authenticated-orcid":false,"given":"Wei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Sanjay","family":"Chawla","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"radford","year":"2015"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ICDMW.2009.9"},{"key":"ref31","article-title":"Penalizied logistic regression for classification","author":"pekhimenko","year":"0"},{"key":"ref30","author":"aliprantis","year":"2000","journal-title":"Games and Decision Making"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/2020408.2020495"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1145\/2339530.2339697"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611973440.106"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2010.2048503"},{"key":"ref14","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref15","article-title":"Conditional generative adversarial nets","author":"mirza","year":"2014","journal-title":"CoRR"},{"key":"ref16","first-page":"1486","article-title":"Deep generative image models using a laplacian pyramid of adversarial networks","author":"denton","year":"2015","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref17","author":"fudenberg","year":"1991","journal-title":"Game Theory"},{"key":"ref18","doi-asserted-by":"crossref","author":"leyton-brown","year":"2008","journal-title":"Essentials of Game Theory A Concise Multidisciplinary Introduction","DOI":"10.1007\/978-3-031-01545-8"},{"key":"ref19","author":"osborne","year":"1994","journal-title":"A Course in Game Theory"},{"key":"ref28","article-title":"UCI machine learning repository","author":"frank","year":"2010"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/1143844.1143889"},{"key":"ref27","first-page":"2617","article-title":"Static prediction games for adversarial learning problems","volume":"13","author":"br\u00fcckner","year":"2012","journal-title":"J Mach Learn Res"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/1081870.1081950"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-010-0197-3"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1137\/090759574"},{"key":"ref5","article-title":"Feature weighting for improved classifier robustness","author":"ko?cz","year":"2009","journal-title":"Proc of the Conf on Email and Anti-Spam"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/2738050"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2016.2585355"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1145\/1014052.1014066"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-010-5199-2"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2014.117"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/BF01096458"},{"key":"ref22","first-page":"311","article-title":"Bundle methods for regularized risk minimization","volume":"11","author":"teo","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICTAI.2013.122"},{"key":"ref24","doi-asserted-by":"crossref","author":"hastie","year":"2009","journal-title":"The Elements of Statistical Learning","DOI":"10.1007\/978-0-387-84858-7"},{"key":"ref23","article-title":"CVX: Matlab software for disciplined convex programming","author":"grant","year":"0"},{"key":"ref26","article-title":"Learning with Kernels","author":"smola","year":"1998"},{"key":"ref25","article-title":"The MNIST database of handwritten digits","author":"lecun","year":"0"}],"container-title":["IEEE Transactions on Knowledge and Data Engineering"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/69\/8352604\/08249883.pdf?arnumber=8249883","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,12]],"date-time":"2022-08-12T00:15:46Z","timestamp":1660263346000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8249883\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6,1]]},"references-count":33,"journal-issue":{"issue":"6"},"URL":"https:\/\/doi.org\/10.1109\/tkde.2018.2790928","relation":{},"ISSN":["1041-4347"],"issn-type":[{"value":"1041-4347","type":"print"}],"subject":[],"published":{"date-parts":[[2018,6,1]]}}}