{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T05:12:54Z","timestamp":1732857174015,"version":"3.30.0"},"reference-count":55,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"12","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"name":"Volvo Trucks"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Intell. Transport. Syst."],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1109\/tits.2024.3463952","type":"journal-article","created":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T17:38:41Z","timestamp":1728063521000},"page":"19785-19795","source":"Crossref","is-referenced-by-count":0,"title":["FrictionSegNet: Simultaneous Semantic Segmentation and Friction Estimation Using Hierarchical Latent Variable Models"],"prefix":"10.1109","volume":"25","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-6192-647X","authenticated-orcid":false,"given":"Mohammad","family":"Otoofi","sequence":"first","affiliation":[{"name":"Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, U.K."}]},{"given":"Leo","family":"Laine","sequence":"additional","affiliation":[{"name":"Volvo Group Trucks Technology, Gothenburg, Sweden"}]},{"given":"Leon","family":"Henderson","sequence":"additional","affiliation":[{"name":"Volvo Group Trucks Technology, Gothenburg, Sweden"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3786-1691","authenticated-orcid":false,"given":"William J. B.","family":"Midgley","sequence":"additional","affiliation":[{"name":"School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1052-1873","authenticated-orcid":false,"given":"Laura","family":"Justham","sequence":"additional","affiliation":[{"name":"Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, U.K."}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2936-4644","authenticated-orcid":false,"given":"James","family":"Fleming","sequence":"additional","affiliation":[{"name":"Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, U.K."}]}],"member":"263","reference":[{"article-title":"Friction measurement methods and the correlation between road friction and traffic safety: A literature review","year":"2001","author":"Wallman","key":"ref1"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1007\/s10033-017-0143-z"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.proeng.2017.04.383"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.3901\/CJME.2016.0126.014"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2014.10.006"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2014.2364854"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/s40544-017-0151-0"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.apacoust.2017.03.018"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.3390\/s20030612"},{"article-title":"The application of intelligent tires and model base estimation algorithms in tire-road contact characterization","year":"2017","author":"Khaleghian","key":"ref10"},{"key":"ref11","first-page":"1","article-title":"Explaining and harnessing adversarial examples","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Goodfellow"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC45102.2020.9294554"},{"volume-title":"Probabilistic Machine Learning: An Introduction","year":"2022","author":"Murphy","key":"ref13"},{"key":"ref14","first-page":"1","article-title":"Auto-encoding variational Bayes","volume-title":"Proc. ICLR: Int. Conf. Learn. Represent.","author":"Kingma"},{"volume-title":"Probabilistic Machine Learning: Advanced Topics","year":"2023","author":"Murphy","key":"ref15"},{"issue":"1","key":"ref16","first-page":"2617","article-title":"Normalizing flows for probabilistic modeling and inference","volume":"22","author":"Papamakarios","year":"2021","journal-title":"J. Mach. Learn. Res."},{"key":"ref17","first-page":"6840","article-title":"Denoising diffusion probabilistic models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Ho"},{"key":"ref18","article-title":"A tutorial on energy-based learning","volume":"1","author":"LeCun","year":"2006","journal-title":"Predicting Structured Data"},{"article-title":"A hierarchical probabilistic u-net for modeling multi-scale ambiguities","volume-title":"Proc. Med. Imag. Meets NeurIPS Workshop NeurIPS","author":"Kohl","key":"ref19"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ICM54990.2023.10101932"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2024.104970"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2022.3161141"},{"key":"ref23","article-title":"Taming VAEs","author":"Rezende","year":"2018","journal-title":"arXiv:1810.00597"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ICMA49215.2020.9233538"},{"key":"ref25","first-page":"1","article-title":"Winter road surface status recognition using deep semantic segmentation network","volume-title":"Proc. Int. Workshop Atmos. Icing Struct. (IWAIS)","author":"Liang"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-023-01835-5"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.jterra.2014.09.001"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.apacoust.2013.09.011"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ICMECH.2019.8722834"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)CP.1943-5487.0000797"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CACSD-CCA-ISIC.2006.4776762"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC.2018.8569396"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2018.8489188"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/IV55152.2023.10186717"},{"key":"ref35","article-title":"MateRobot: Material recognition in wearable robotics for people with visual impairments","author":"Zheng","year":"2023","journal-title":"arXiv:2302.14595"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref37","first-page":"1","article-title":"Generating diverse high-fidelity images with VQ-VAE-2","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Razavi"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00453"},{"key":"ref39","article-title":"StyleNAT: Giving each head a new perspective","author":"Walton","year":"2022","journal-title":"arXiv:2211.05770"},{"key":"ref40","article-title":"Intriguing properties of neural networks","author":"Szegedy","year":"2013","journal-title":"arXiv:1312.6199"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1038\/nature14541"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1145\/3422622"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3116668"},{"key":"ref44","article-title":"Learning structured output representation using deep conditional generative models","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"28","author":"Sohn"},{"key":"ref45","first-page":"1298","article-title":"Data2Vec: A general framework for self-supervised learning in speech, vision and language","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Baevski"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref48","first-page":"29935","article-title":"Data augmentation can improve robustness","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Rebuffi"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2023.3264588"},{"key":"ref50","first-page":"1","article-title":"Adam: A method for stochastic optimization","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Kingma"},{"key":"ref51","first-page":"1321","article-title":"On calibration of modern neural networks","volume-title":"Proc. 34th Intl. Conf. Mach. Learn.","author":"Guo"},{"key":"ref52","first-page":"15682","article-title":"Revisiting the calibration of modern neural networks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Minderer"},{"key":"ref53","first-page":"12077","article-title":"SegFormer: Simple and efficient design for semantic segmentation with transformers","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Xie"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.350"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1002\/qj.456"}],"container-title":["IEEE Transactions on Intelligent Transportation Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/6979\/10769775\/10705359.pdf?arnumber=10705359","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,28]],"date-time":"2024-11-28T05:31:43Z","timestamp":1732771903000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10705359\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":55,"journal-issue":{"issue":"12"},"URL":"https:\/\/doi.org\/10.1109\/tits.2024.3463952","relation":{},"ISSN":["1524-9050","1558-0016"],"issn-type":[{"type":"print","value":"1524-9050"},{"type":"electronic","value":"1558-0016"}],"subject":[],"published":{"date-parts":[[2024,12]]}}}