{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,7]],"date-time":"2025-04-07T07:45:56Z","timestamp":1744011956352,"version":"3.37.3"},"reference-count":77,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61801055"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2018B23014"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Intell. Transport. Syst."],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1109\/tits.2023.3279929","type":"journal-article","created":{"date-parts":[[2023,6,2]],"date-time":"2023-06-02T19:57:07Z","timestamp":1685735827000},"page":"11210-11224","source":"Crossref","is-referenced-by-count":22,"title":["GraphSAGE-Based Dynamic Spatial\u2013Temporal Graph Convolutional Network for Traffic Prediction"],"prefix":"10.1109","volume":"24","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1935-168X","authenticated-orcid":false,"given":"Tao","family":"Liu","sequence":"first","affiliation":[{"name":"College of Information Science and Engineering, Hohai University, Changzhou, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9181-934X","authenticated-orcid":false,"given":"Aimin","family":"Jiang","sequence":"additional","affiliation":[{"name":"College of Information Science and Engineering, Hohai University, Changzhou, China"}]},{"given":"Jia","family":"Zhou","sequence":"additional","affiliation":[{"name":"College of Information Science and Engineering, Hohai University, Changzhou, China"}]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[{"name":"College of Information Science and Engineering, Hohai University, Changzhou, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0173-1625","authenticated-orcid":false,"given":"Hon Keung","family":"Kwan","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/s11432-012-4725-1"},{"key":"ref2","first-page":"628","article-title":"Data sources for urban traffic prediction: A review on classification, comparison and technologies","volume-title":"Proc. 3rd Int. Conf. Intell. Sustain. Syst. (ICISS)","author":"Ashwini"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.proeng.2016.01.290"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s10109-011-0149-5"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2015.2457240"},{"key":"ref6","first-page":"1","article-title":"Diffusion convolutional recurrent neural network: Data-driven traffic forecasting","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Li"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.3141\/1678-22"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1061\/(asce)0733-947x(2003)129:6(664)"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/S0968-090X(97)82903-8"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.3141\/1776-25"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.2307\/1268381"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLC.2009.5212785"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC.2009.5309741"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1111\/gean.12026"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.cageo.2004.05.012"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ITSC.2010.5625123"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2014.02.009"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1080\/15472450.2013.771107"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/S0169-2070(96)00697-8"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.3141\/1811-04"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/YAC.2016.7804912"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.3390\/s17040818"},{"key":"ref23","article-title":"Semi-supervised classification with graph convolutional networks","author":"Kipf","year":"2016","journal-title":"arXiv:1609.02907"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/505"},{"key":"ref25","first-page":"1025","article-title":"Inductive representation learning on large graphs","volume-title":"Proc. 28th Int. Conf. Neural Inf. Process. Syst.","author":"Hamilton"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5438"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2021.3124818"},{"key":"ref28","first-page":"1","article-title":"Graph attention networks","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Veli\u010dkovi\u0107"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5477"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.3301922"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2020.01.010"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2021.3054840"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2012.2235192"},{"key":"ref34","first-page":"1","article-title":"Spectral networks and locally connected networks on graphs","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Bruna"},{"key":"ref35","first-page":"3837","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","volume-title":"Proc. 28th Int. Conf. Neural Inf. Process. Syst.","author":"Defferrard"},{"key":"ref36","first-page":"1","article-title":"Graph wavelet neural network","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Xu"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1088\/1742-6596\/1549\/4\/042070"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330884"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1080\/21680566.2020.1822765"},{"key":"ref40","article-title":"Multistep speed prediction on traffic networks: A graph convolutional sequence-to-sequence learning approach with attention mechanism","author":"Zhang","year":"2018","journal-title":"arXiv:1810.10237"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2950416"},{"key":"ref42","first-page":"1","article-title":"Adaptive graph convolutional recurrent network for traffic forecasting","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Bai"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5470"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1145\/3532611"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN55064.2022.9892191"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2953888"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.3019497"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1145\/3534678.3539300"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2021.07.007"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2020.01.043"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2014.2311123"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2014.2345663"},{"key":"ref53","first-page":"153","article-title":"The difficulty of training deep architectures and the effect of unsupervised pre-training","volume-title":"Proc. Int. Conf. Artif. Intell. Stat.","author":"Erhan"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1016\/S0377-2217(00)00125-9"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2015.03.014"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.2478\/jaiscr-2019-0006"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2019.2923982"},{"key":"ref58","first-page":"1243","article-title":"Convolutional sequence to sequence learning","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Gehring"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2020\/326"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/264"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.3390\/app10041509"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.3025076"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2020.11.038"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33015668"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i5.16542"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1109\/tkde.2023.3284156"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403320"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2022.108696"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1109\/IEMCON53756.2021.9623238"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1109\/ISCID.2019.10128"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1109\/NOMS54207.2022.9789878"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.3026025"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.21437\/SSW.2016"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2935152"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1002\/for.3980140302"},{"key":"ref77","first-page":"1","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","volume-title":"Proc. NIPS","author":"Chung"}],"container-title":["IEEE Transactions on Intelligent Transportation Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6979\/10271405\/10143385.pdf?arnumber=10143385","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T08:57:33Z","timestamp":1709283453000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10143385\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":77,"journal-issue":{"issue":"10"},"URL":"https:\/\/doi.org\/10.1109\/tits.2023.3279929","relation":{},"ISSN":["1524-9050","1558-0016"],"issn-type":[{"type":"print","value":"1524-9050"},{"type":"electronic","value":"1558-0016"}],"subject":[],"published":{"date-parts":[[2023,10]]}}}