{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T15:57:07Z","timestamp":1726847827878},"reference-count":30,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"2","license":[{"start":{"date-parts":[[2011,6,1]],"date-time":"2011-06-01T00:00:00Z","timestamp":1306886400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Intell. Transport. Syst."],"published-print":{"date-parts":[[2011,6]]},"DOI":"10.1109\/tits.2010.2093575","type":"journal-article","created":{"date-parts":[[2010,12,14]],"date-time":"2010-12-14T18:22:08Z","timestamp":1292350928000},"page":"466-475","source":"Crossref","is-referenced-by-count":115,"title":["Variational Inference for Infinite Mixtures of Gaussian Processes With Applications to Traffic Flow Prediction"],"prefix":"10.1109","volume":"12","author":[{"given":"Shiliang","family":"Sun","sequence":"first","affiliation":[]},{"given":"Xin","family":"Xu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref30","first-page":"208","article-title":"Short-term traffic flow forecasting based on Markov chain model","author":"yu","year":"2003","journal-title":"Proc IEEE Intell Veh Symp"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2006.869623"},{"key":"ref11","first-page":"619","article-title":"Sparse greedy Gaussian process regression","volume":"13","author":"smola","year":"2001","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1176342360"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1198\/016214506000000302"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1214\/06-BA104"},{"key":"ref15","first-page":"639","article-title":"A constructive definition of Dirichlet priors","volume":"4","author":"sethuraman","year":"1994","journal-title":"Stat Sinica"},{"key":"ref16","first-page":"554","article-title":"The infinite Gaussian mixture model","volume":"12","author":"rasmussen","year":"2000","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref17","author":"duda","year":"2001","journal-title":"Pattern Classification"},{"key":"ref18","author":"feynman","year":"1964","journal-title":"The Feynman Lectures on Physics"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177729694"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2010.2042807"},{"key":"ref4","first-page":"883","article-title":"An alternative infinite mixture of Gaussian process experts","volume":"18","author":"meeds","year":"2006","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2009.2028149"},{"key":"ref3","first-page":"881","article-title":"Infinite mixtures of Gaussian process experts","volume":"14","author":"rasmussen","year":"2002","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref6","first-page":"633","article-title":"An alternative model for mixtures of experts","volume":"7","author":"xu","year":"1995","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1991.3.1.79"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2010.2060218"},{"key":"ref8","author":"bishop","year":"2006","journal-title":"Pattern Recognition and Machine Learning"},{"key":"ref7","first-page":"1897","article-title":"Variational mixture of Gaussian process experts","volume":"21","author":"yuan","year":"2009","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref2","first-page":"654","article-title":"Mixtures of Gaussian processes","volume":"13","author":"tresp","year":"2001","journal-title":"Adv Neural Inf Process Syst"},{"key":"ref9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000001","article-title":"Graphical models, exponential families, and variational inference","volume":"1","author":"wainwright","year":"2008","journal-title":"Found Trends Mach Learn"},{"key":"ref1","author":"rasmussen","year":"2006","journal-title":"Gaussian Processes for Machine Learning"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1198\/016214501750332758"},{"key":"ref22","first-page":"57","article-title":"Bayesian hierarchical mixtures of experts","author":"bishop","year":"2003","journal-title":"Proc 19th Conf Uncertainty Artif Intell"},{"key":"ref21","author":"parisi","year":"1988","journal-title":"Statistical Field Theory"},{"key":"ref24","author":"minka","year":"2007","journal-title":"A comparison of numerical optimizers for logistic regression"},{"key":"ref23","author":"teh","year":"2010","journal-title":"Encyclopedia of Machine Learning"},{"key":"ref26","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1109\/TITS.2010.2043751","article-title":"Building an intellectual highway for ITS research and development","volume":"11","author":"wang","year":"2010","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2006.888603"}],"container-title":["IEEE Transactions on Intelligent Transportation Systems"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx5\/6979\/5779921\/05664792.pdf?arnumber=5664792","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,10]],"date-time":"2021-10-10T23:47:36Z","timestamp":1633909656000},"score":1,"resource":{"primary":{"URL":"http:\/\/ieeexplore.ieee.org\/document\/5664792\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011,6]]},"references-count":30,"journal-issue":{"issue":"2"},"URL":"https:\/\/doi.org\/10.1109\/tits.2010.2093575","relation":{},"ISSN":["1524-9050","1558-0016"],"issn-type":[{"value":"1524-9050","type":"print"},{"value":"1558-0016","type":"electronic"}],"subject":[],"published":{"date-parts":[[2011,6]]}}}