{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T10:21:14Z","timestamp":1740133274857,"version":"3.37.3"},"reference-count":91,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"publisher","award":["623B2098","62371434","62021001"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. on Image Process."],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/tip.2024.3437212","type":"journal-article","created":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T18:12:16Z","timestamp":1723140736000},"page":"5340-5353","source":"Crossref","is-referenced-by-count":0,"title":["Semantic-Aware Message Broadcasting for Efficient Unsupervised Domain Adaptation"],"prefix":"10.1109","volume":"33","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6352-6523","authenticated-orcid":false,"given":"Xin","family":"Li","sequence":"first","affiliation":[{"name":"Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9145-9957","authenticated-orcid":false,"given":"Cuiling","family":"Lan","sequence":"additional","affiliation":[{"name":"Microsoft Research Asia (MSRA), Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1846-5693","authenticated-orcid":false,"given":"Guoqiang","family":"Wei","sequence":"additional","affiliation":[{"name":"Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8525-5066","authenticated-orcid":false,"given":"Zhibo","family":"Chen","sequence":"additional","affiliation":[{"name":"Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China"}]}],"member":"263","reference":[{"key":"ref1","article-title":"An image is worth 16\u00d716 words: Transformers for image recognition at scale","volume-title":"arXiv:2010.11929","author":"Dosovitskiy","year":"2020"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.322"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00135"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.2203.16527"},{"key":"ref7","first-page":"9355","article-title":"Twins: Revisiting the design of spatial attention in vision transformers","volume-title":"Proc. 35th Conf. Neural Inf. Process. Syst.","author":"Chu"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3195549"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2022.3178128"},{"key":"ref10","article-title":"Confounder identification-free causal visual feature learning","volume-title":"arXiv:2111.13420","author":"Li","year":"2021"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00713"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.5555\/2946645.2946704"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btl242"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3152052"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3056212"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3186537"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3094140"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref20","first-page":"13834","article-title":"ToAlign: Task-oriented alignment for unsupervised domain adaptation","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Wei"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.316"},{"key":"ref22","first-page":"2988","article-title":"Asymmetric tri-training for unsupervised domain adaptation","volume-title":"Proc. 34th Int. Conf. Mach. Learn. (ICML)","volume":"70","author":"Saito"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00608"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00912"},{"key":"ref25","article-title":"A survey on domain adaptation theory: Learning bounds and theoretical guarantees","volume-title":"arXiv:2004.11829","author":"Redko","year":"2020"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/3400066"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00061"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01760"},{"key":"ref30","article-title":"Deformable DETR: Deformable transformers for end-to-end object detection","volume-title":"arXiv:2010.04159","author":"Zhu","year":"2020"},{"key":"ref31","article-title":"HST: Hierarchical Swin transformer for compressed image super-resolution","volume-title":"arXiv:2208.09885","author":"Li","year":"2022"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW56347.2022.00194"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-16431-6_61"},{"key":"ref34","article-title":"TVT: Transferable vision transformer for unsupervised domain adaptation","volume-title":"arXiv:2108.05988","author":"Yang","year":"2021"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00705"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00969"},{"key":"ref37","article-title":"CDTrans: Cross-domain transformer for unsupervised domain adaptation","volume-title":"arXiv:2109.06165","author":"Xu","year":"2021"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref39","article-title":"Categorical reparameterization with gumbel-softmax","volume-title":"arXiv:1611.01144","author":"Jang","year":"2016"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00149"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.572"},{"key":"ref42","article-title":"VisDA: The visual domain adaptation challenge","volume-title":"arXiv:1710.06924","author":"Peng","year":"2017"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3109530"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3073285"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3157139"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2021.3136615"},{"key":"ref47","article-title":"StyleAM: Perception-oriented unsupervised domain adaption for non-reference image quality assessment","volume-title":"arXiv:2207.14489","author":"Lu","year":"2022"},{"key":"ref48","article-title":"Source-free unsupervised domain adaptation for blind image quality assessment","volume-title":"arXiv:2207.08124","author":"Liu","year":"2022"},{"key":"ref49","article-title":"Central moment discrepancy (CMD) for domain-invariant representation learning","volume-title":"arXiv:1702.08811","author":"Zellinger","year":"2017"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v30i1.10306"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-49409-8_35"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00517"},{"key":"ref53","first-page":"1989","article-title":"CyCADA: Cycle-consistent adversarial domain adaptation","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Hoffman"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00845"},{"key":"ref55","first-page":"1","article-title":"Conditional adversarial domain adaptation","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"31","author":"Long"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00392"},{"key":"ref57","first-page":"5423","article-title":"Learning semantic representations for unsupervised domain adaptation","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Xie"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33015345"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00704"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00072"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i10.17027"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.5943"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00753"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01637"},{"key":"ref65","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","volume-title":"Proc. 34th Int. Conf. Mach. Learn.","volume":"70","author":"Finn"},{"key":"ref66","article-title":"Self-ensembling for visual domain adaptation","volume-title":"arXiv:1706.05208","author":"French","year":"2017"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01219-9_18"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58574-7_25"},{"key":"ref69","first-page":"22968","article-title":"Cycle self-training for domain adaptation","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"34","author":"Liu"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00115"},{"key":"ref71","article-title":"CA-UDA: Class-aware unsupervised domain adaptation with optimal assignment and pseudo-label refinement","volume-title":"arXiv:2205.13579","author":"Zhang","year":"2022"},{"key":"ref72","article-title":"Low-confidence samples matter for domain adaptation","volume-title":"arXiv:2202.02802","author":"Zhang","year":"2022"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00681"},{"key":"ref74","first-page":"10347","article-title":"Training data-efficient image transformers & distillation through attention","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Touvron"},{"key":"ref75","article-title":"Exploiting both domain-specific and invariant knowledge via a win-win transformer for unsupervised domain adaptation","volume-title":"arXiv:2111.12941","author":"Ma","year":"2021"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00736"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.01735"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.1109\/WACV57701.2024.00191"},{"key":"ref79","article-title":"Domain adaptation via bidirectional cross-attention transformer","volume-title":"arXiv:2201.05887","author":"Wang","year":"2022"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00347"},{"key":"ref81","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP49359.2023.10222054"},{"key":"ref82","article-title":"Robust core-periphery constrained transformer for domain adaptation","volume-title":"arXiv:2308.13515","author":"Yu","year":"2023"},{"key":"ref83","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2024.3352392"},{"key":"ref84","doi-asserted-by":"publisher","DOI":"10.1145\/3503161.3548229"},{"key":"ref85","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00151"},{"key":"ref86","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01053"},{"key":"ref87","first-page":"6028","article-title":"Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Liang"},{"key":"ref88","first-page":"1","article-title":"Neural discrete representation learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"30","author":"Van Den Oord"},{"key":"ref89","first-page":"1","article-title":"Transferable normalization: Towards improving transferability of deep neural networks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"32","author":"Wang"},{"key":"ref90","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00897"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2022.3184848"}],"container-title":["IEEE Transactions on Image Processing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/83\/10346232\/10630651.pdf?arnumber=10630651","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,3]],"date-time":"2024-10-03T17:28:53Z","timestamp":1727976533000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10630651\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":91,"URL":"https:\/\/doi.org\/10.1109\/tip.2024.3437212","relation":{},"ISSN":["1057-7149","1941-0042"],"issn-type":[{"type":"print","value":"1057-7149"},{"type":"electronic","value":"1941-0042"}],"subject":[],"published":{"date-parts":[[2024]]}}}