{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:17:58Z","timestamp":1742804278044,"version":"3.37.3"},"reference-count":70,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61751308","61773311"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"crossref","award":["2016YFB1001004"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. on Image Process."],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/tip.2019.2937724","type":"journal-article","created":{"date-parts":[[2019,9,3]],"date-time":"2019-09-03T00:28:07Z","timestamp":1567470487000},"page":"1061-1073","source":"Crossref","is-referenced-by-count":86,"title":["EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks"],"prefix":"10.1109","volume":"29","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8303-8930","authenticated-orcid":false,"given":"Pengfei","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4994-9343","authenticated-orcid":false,"given":"Jianru","family":"Xue","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9145-9957","authenticated-orcid":false,"given":"Cuiling","family":"Lan","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2531-3137","authenticated-orcid":false,"given":"Wenjun","family":"Zeng","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2031-2805","authenticated-orcid":false,"given":"Zhanning","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Nanning","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref70","first-page":"3697","article-title":"Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks","author":"zhu","year":"2016","journal-title":"Proc AAAI"},{"key":"ref39","article-title":"Action recognition using visual attention","author":"sharma","year":"2015","journal-title":"arXiv 1511 04119"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.115"},{"key":"ref33","first-page":"816","article-title":"Spatio-temporal LSTM with trust gates for 3D human action recognition","author":"liu","year":"2016","journal-title":"Proc ECCV"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.161"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00572"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2016.2642789"},{"journal-title":"LSTM","year":"2015","author":"olah","key":"ref37"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2017.10.033"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D15-1166"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.391"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2012.6239233"},{"key":"ref62","first-page":"1","article-title":"Show, attend and tell: Neural image captiongeneration with visual attention","author":"xu","year":"2015","journal-title":"Proc ICML"},{"journal-title":"TSN Model","year":"2016","author":"xiong","key":"ref61"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299101"},{"key":"ref28","article-title":"A simple way to initialize recurrent networks of rectified linear units","author":"le","year":"2015","journal-title":"arXiv 1504 00941"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.233"},{"key":"ref27","first-page":"9017","article-title":"FastGRNN: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network","author":"kusupati","year":"2018","journal-title":"Proc NIPS"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2019.2896631"},{"key":"ref66","first-page":"12085","article-title":"SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction","author":"zhang","year":"2019","journal-title":"Proc CVPR"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref67","first-page":"135","article-title":"Adding attentiveness to the neurons in recurrent neural networks","author":"zhang","year":"2018","journal-title":"Proc ECCV"},{"key":"ref68","first-page":"1822","article-title":"Architectural complexity measures of recurrent neural networks","author":"zhang","year":"2016","journal-title":"Proc NIPS"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00773"},{"key":"ref2","first-page":"1120","article-title":"Unitary evolution recurrent neural networks","author":"arjovsky","year":"2016","journal-title":"Proc ICML"},{"key":"ref1","article-title":"Theano: A python framework for fast computation of mathematical expressions","author":"al-rfou","year":"2016","journal-title":"arXiv 1605 02688"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299172"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.396"},{"key":"ref21","first-page":"280","article-title":"Real-time RGB-D activity prediction by soft regression","author":"hu","year":"2016","journal-title":"Proc ECCV"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.486"},{"key":"ref23","first-page":"2342","article-title":"An empirical exploration of recurrent network architectures","author":"jozefowicz","year":"2015","journal-title":"Proc ICML"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126543"},{"key":"ref25","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref50","first-page":"451","article-title":"Dividing and aggregating network for multi-view action recognition","author":"wang","year":"2018","journal-title":"Proc ECCV"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.441"},{"key":"ref59","first-page":"3","article-title":"CBAM: Convolutional block attention module","author":"woo","year":"2018","journal-title":"Proc ECCV"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.55"},{"key":"ref57","first-page":"136","article-title":"Deformable pose traversal convolution for 3d action and gesture recognition","author":"weng","year":"2018","journal-title":"Proc ECCV"},{"key":"ref56","article-title":"Hierarchical attention network for action recognition in videos","author":"wang","year":"2016","journal-title":"arXiv 1607 06416"},{"key":"ref55","first-page":"20","article-title":"Graph based skeleton motion representation and similarity measurement for action recognition","author":"wang","year":"2016","journal-title":"Proc ECCV"},{"key":"ref54","article-title":"Temporal segment networks: Towards good practices for deep action recognition","author":"wang","year":"2016","journal-title":"Proc ECCV"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.339"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.198"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.168"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298878"},{"key":"ref40","first-page":"103","article-title":"Skeleton-based action recognition with spatial reasoning and temporal stack learning","author":"si","year":"2018","journal-title":"Proc ECCV"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2552404"},{"key":"ref13","first-page":"1110","article-title":"Hierarchical recurrent neural network for skeleton based action recognition","author":"du","year":"2015","journal-title":"Proc CVPR"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2014.772"},{"key":"ref15","first-page":"850","article-title":"Learning to forget: Continual prediction with LSTM","author":"gers","year":"1999"},{"key":"ref16","first-page":"115","article-title":"Learning precise timing with LSTM recurrent networks","volume":"3","author":"gers","year":"2002","journal-title":"J Mach Learn Res"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00745"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1179"},{"key":"ref3","first-page":"1","article-title":"Skip RNN: Learning to skip state updates in recurrent neural networks","author":"camunez","year":"2018","journal-title":"Proc ICLR"},{"journal-title":"Keras","year":"2015","author":"chollet","key":"ref6"},{"journal-title":"Resnet50 Model","year":"0","author":"chollet","key":"ref5"},{"key":"ref8","article-title":"Recurrent batch normalization","author":"cooijmans","year":"2016","journal-title":"arXiv 1603 09025"},{"key":"ref7","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"chung","year":"2014","journal-title":"arXiv 1412 3555"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298935"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2016.153"},{"key":"ref46","first-page":"5998","article-title":"Attention is all you need","author":"vaswani","year":"2017","journal-title":"Proc NIPS"},{"key":"ref45","first-page":"3104","article-title":"Sequence to sequence learning with neural networks","author":"sutskever","year":"2014","journal-title":"Proc NIPS"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.82"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.460"},{"key":"ref42","first-page":"4263","article-title":"An end-to-end spatio-temporal attention model for human action recognition from skeleton data","author":"song","year":"2017","journal-title":"Proc AAAI"},{"key":"ref41","first-page":"568","article-title":"Two-stream convolutional networks for action recognition in videos","author":"simonyan","year":"2014","journal-title":"Proc NIPS"},{"key":"ref44","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2818328"}],"container-title":["IEEE Transactions on Image Processing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/83\/8835130\/08822600.pdf?arnumber=8822600","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,4,27]],"date-time":"2022-04-27T14:38:41Z","timestamp":1651070321000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8822600\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":70,"URL":"https:\/\/doi.org\/10.1109\/tip.2019.2937724","relation":{},"ISSN":["1057-7149","1941-0042"],"issn-type":[{"type":"print","value":"1057-7149"},{"type":"electronic","value":"1941-0042"}],"subject":[],"published":{"date-parts":[[2020]]}}}