{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T10:20:34Z","timestamp":1740133234959,"version":"3.37.3"},"reference-count":40,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","issue":"10","license":[{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61701341","61572356","61802277"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2018M641648"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. on Image Process."],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1109\/tip.2019.2912294","type":"journal-article","created":{"date-parts":[[2019,5,13]],"date-time":"2019-05-13T19:22:37Z","timestamp":1557775357000},"page":"4926-4940","source":"Crossref","is-referenced-by-count":32,"title":["BE-CALF: Bit-Depth Enhancement by Concatenating All Level Features of DNN"],"prefix":"10.1109","volume":"28","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4690-1886","authenticated-orcid":false,"given":"Jing","family":"Liu","sequence":"first","affiliation":[]},{"given":"Wanning","family":"Sun","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5165-204X","authenticated-orcid":false,"given":"Yuting","family":"Su","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2648-7358","authenticated-orcid":false,"given":"Peiguang","family":"Jing","sequence":"additional","affiliation":[]},{"given":"Xiaokang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"journal-title":"Kodak Lossless True Color Image Suite","year":"1999","key":"ref39"},{"journal-title":"Xiph org","year":"2016","author":"foundation","key":"ref38"},{"key":"ref33","first-page":"807","article-title":"Rectified linear units improve restricted Boltzmann machines","author":"nair","year":"2010","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref32","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2010.5539957"},{"key":"ref30","first-page":"694","article-title":"Perceptual losses for real-time style transfer and super-resolution","author":"johnson","year":"2016","journal-title":"Proc Eur Conf Comput Vis (ECCV)"},{"key":"ref37","first-page":"4681","article-title":"Photo-realistic single image super-resolution using a generative adversarial network","author":"ledig","year":"2016","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"ref35","first-page":"2261","article-title":"Densely connected convolutional networks","author":"huang","year":"2016","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"},{"key":"ref34","first-page":"1","article-title":"Wide residual networks","author":"zagoruyko","year":"2016","journal-title":"Proc Brit Mach Vis Conf (BMVC)"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.84"},{"journal-title":"Adam A method for stochastic optimization","year":"2014","author":"kingma","key":"ref40"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2772836"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2642781"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2865311"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-018-1076-4"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2019.04.011"},{"key":"ref16","first-page":"2802","article-title":"Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections","author":"mao","year":"2016","journal-title":"Proc Adv Neural Inform Process Syst (NIPS)"},{"key":"ref17","first-page":"27","article-title":"Using very deep autoencoders for content-based image retrieval","author":"krizhevsky","year":"2012","journal-title":"Proc Eur Symp Artif Neural Netw (ESANN)"},{"journal-title":"Stochastic backpropagation and approximate inference in deep generative models","year":"2014","author":"rezende","key":"ref18"},{"key":"ref19","first-page":"1","article-title":"Auto-encoding variational Bayes","author":"kingma","year":"2014","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2888885"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.2009.5117913"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.23919\/BIOSIG.2017.8053505"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/VCIP.2012.6410837"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2012.6467019"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2019.2897909"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1117\/12.526937"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2014.7025823"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2553523"},{"key":"ref2","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1117\/12.298285","article-title":"Pixel bit-depth increase by bit replication","volume":"3300","author":"ulichney","year":"1998","journal-title":"Proc SPIE"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2774045"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICME.2012.118"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/VCIP.2012.6410837"},{"key":"ref22","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst (NIPS)"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2803306"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"journal-title":"Very Deep Convolutional Networks for Large-scale Image Recognition","year":"2014","author":"simonyan","key":"ref23"},{"journal-title":"When image denoising meets high-level vision tasks A deep learning approach","year":"2017","author":"liu","key":"ref26"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"}],"container-title":["IEEE Transactions on Image Processing"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/83\/8784442\/08713480.pdf?arnumber=8713480","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,13]],"date-time":"2022-07-13T20:44:26Z","timestamp":1657745066000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8713480\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,10]]},"references-count":40,"journal-issue":{"issue":"10"},"URL":"https:\/\/doi.org\/10.1109\/tip.2019.2912294","relation":{},"ISSN":["1057-7149","1941-0042"],"issn-type":[{"type":"print","value":"1057-7149"},{"type":"electronic","value":"1941-0042"}],"subject":[],"published":{"date-parts":[[2019,10]]}}}