{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T10:09:44Z","timestamp":1740132584774,"version":"3.37.3"},"reference-count":46,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62073006","62021003"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004826","name":"Beijing Natural Science Foundation","doi-asserted-by":"publisher","award":["4212032"],"id":[{"id":"10.13039\/501100004826","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2021ZD0112301","2021ZD0112302"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Instrum. Meas."],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/tim.2023.3309389","type":"journal-article","created":{"date-parts":[[2023,8,28]],"date-time":"2023-08-28T17:52:59Z","timestamp":1693245179000},"page":"1-13","source":"Crossref","is-referenced-by-count":1,"title":["Multiscale Modeling Using GAN and Deep Forest Regression With Application to Dioxin Emission Soft Sensor"],"prefix":"10.1109","volume":"72","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2571-6932","authenticated-orcid":false,"given":"Canlin","family":"Cui","sequence":"first","affiliation":[{"name":"Faculty of Information Technology, Beijing University of Technology, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2270-268X","authenticated-orcid":false,"given":"Jian","family":"Tang","sequence":"additional","affiliation":[{"name":"Faculty of Information Technology, Beijing University of Technology, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7045-6941","authenticated-orcid":false,"given":"Heng","family":"Xia","sequence":"additional","affiliation":[{"name":"Faculty of Information Technology, Beijing University of Technology, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9540-7924","authenticated-orcid":false,"given":"Wen","family":"Yu","sequence":"additional","affiliation":[{"name":"Departamento de Control Automatico, CINVESTAV-IPN (National Polytechnic Institute), Mexico City, Mexico"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3372-4729","authenticated-orcid":false,"given":"Junfei","family":"Qiao","sequence":"additional","affiliation":[{"name":"Faculty of Information Technology, Beijing University of Technology, Beijing, China"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2020.2972956"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2021.3105442"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3120135"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btr597"},{"key":"ref15","first-page":"2743","article-title":"Wide and heavy plate crown control based on data mining","volume":"50","author":"cao","year":"2019","journal-title":"J Cent South Univ Technol"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.epsr.2022.108642"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-021-06809-7"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-020-05066-4"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2020.3024976"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2020.2990975"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2021.104497"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-021-03438-x"},{"key":"ref10","first-page":"1063","article-title":"Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey","volume":"46","author":"qiao","year":"2020","journal-title":"Acta Autom Sin"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1177\/09622802221084596"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3075515"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.2021.3130232"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2017\/497"},{"key":"ref39","first-page":"5689","article-title":"GAIN: Missing data imputation using generative adversarial nets","author":"yoon","year":"2018","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.fuel.2018.11.049"},{"key":"ref38","first-page":"627","article-title":"Variational imputation model of multi-source industrial data based on domain adaptation","volume":"29","author":"li","year":"2022","journal-title":"Control Eng China"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3083889"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-021-05691-7"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.arcontrol.2018.09.003"},{"key":"ref46","first-page":"343","article-title":"Soft sensing method of dioxin emission in municipal solid waste incineration process based on broad hybrid forest regression","volume":"49","author":"xia","year":"2023","journal-title":"Acta Autom Sin"},{"key":"ref23","first-page":"363","article-title":"Core temperature prediction model based on AdaBoost algorithm","volume":"32","author":"wang","year":"2020","journal-title":"J Iron Steel Res Int"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1007\/s11356-020-08087-7"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.chemosphere.2021.132647"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3089783"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2022.3168898"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/IECON48115.2021.9589716"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TSTE.2020.3004751"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2020.3033153"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1016\/j.scitotenv.2023.163705"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.jprocont.2020.05.012"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TASE.2021.3132037"},{"key":"ref28","first-page":"2929","article-title":"Customized generative adversarial data imputation model for industrial soft sensing","volume":"36","author":"yao","year":"2021","journal-title":"J Control Decis"},{"key":"ref27","first-page":"27","article-title":"Review of missing data processing methods","volume":"57","author":"xiong","year":"2021","journal-title":"Comput Eng Appl"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.envint.2020.105713"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3130411"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3073702"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2022.3214611"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/JAS.2019.1911804"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.compchemeng.2008.12.012"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3053128"},{"key":"ref5","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1109\/MIE.2020.3034884","article-title":"Deep transfer learning for industrial automation: A review and discussion of new techniques for data-driven machine learning","volume":"15","author":"maschler","year":"2021","journal-title":"IEEE Ind Electron Mag"},{"key":"ref40","article-title":"MisGAN: Learning from incomplete data with generative adversarial networks","author":"cheng-xian li","year":"2019","journal-title":"arXiv 1902 09599"}],"container-title":["IEEE Transactions on Instrumentation and Measurement"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/19\/10012124\/10233112.pdf?arnumber=10233112","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,16]],"date-time":"2023-10-16T18:03:30Z","timestamp":1697479410000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10233112\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":46,"URL":"https:\/\/doi.org\/10.1109\/tim.2023.3309389","relation":{},"ISSN":["0018-9456","1557-9662"],"issn-type":[{"type":"print","value":"0018-9456"},{"type":"electronic","value":"1557-9662"}],"subject":[],"published":{"date-parts":[[2023]]}}}