{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,15]],"date-time":"2024-06-15T05:22:08Z","timestamp":1718428928381},"reference-count":51,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFA0701400"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key Research and Development Program of Zhejiang","award":["2022C03011"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study","award":["SN-ZJU-SIAS-002"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Instrum. Meas."],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/tim.2023.3276529","type":"journal-article","created":{"date-parts":[[2023,5,15]],"date-time":"2023-05-15T18:23:47Z","timestamp":1684175027000},"page":"1-13","source":"Crossref","is-referenced-by-count":5,"title":["MTHM: Self-Supervised Multitask Anomaly Detection With Hard Example Mining"],"prefix":"10.1109","volume":"72","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0107-7328","authenticated-orcid":false,"given":"Chenkai","family":"Zhang","sequence":"first","affiliation":[{"name":"College of Computer Science and Technology and the Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7742-0722","authenticated-orcid":false,"given":"Yueming","family":"Wang","sequence":"additional","affiliation":[{"name":"College of Computer Science and Technology and the Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1338-4536","authenticated-orcid":false,"given":"Wenming","family":"Tan","sequence":"additional","affiliation":[{"name":"Hikvision Research Institute, Hangzhou, China"}]}],"member":"263","reference":[{"key":"ref13","first-page":"1","article-title":"Superpixel masking and inpainting for self-supervised anomaly detection","author":"li","year":"2020","journal-title":"Proc Brit Mach Vis Conf"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i4.16420"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00954"},{"key":"ref14","article-title":"Puzzle-AE: Novelty detection in images through solving puzzles","author":"salehi","year":"2020","journal-title":"arXiv 2008 12959"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01438"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00867"},{"key":"ref17","first-page":"1","article-title":"Training confidence-calibrated classifiers for detecting out-of-distribution samples","author":"lee","year":"2018","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref16","first-page":"1","article-title":"Explainable deep one-class classification","author":"liznerski","year":"2021","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.381"},{"key":"ref18","first-page":"1","article-title":"Deep anomaly detection with outlier exposure","author":"hendrycks","year":"2019","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref50","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der maaten","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref46","first-page":"1","article-title":"Patch SVDD: Patch-level SVDD for anomaly detection and segmentation","author":"yi","year":"2020","journal-title":"Proc Asian Conf Comput Vis"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3107586"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-59050-9_12"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v36i1.19915"},{"key":"ref42","author":"wieler","year":"2007","journal-title":"DAGM"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00982"},{"key":"ref44","first-page":"1","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2015","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref43","article-title":"Self-supervised guided segmentation framework for unsupervised anomaly detection","author":"xing","year":"2022","journal-title":"arXiv 2209 12440"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2021.3070203"},{"key":"ref8","first-page":"153","article-title":"Greedy layer-wise training of deep networks","author":"bengio","year":"2006","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref7","author":"han","year":"2011","journal-title":"Data Mining Concepts and Techniques"},{"key":"ref9","article-title":"The information bottleneck method","author":"tishby","year":"2000","journal-title":"Arxiv Preprint Physics\/0004057"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TAI.2021.3057027"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3128961"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2022.3194920"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3092510"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/SIU53274.2021.9477804"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/IGARSS.2019.8898133"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32248-9_51"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.19"},{"key":"ref36","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"2015","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.226"},{"key":"ref30","first-page":"9120","article-title":"Which tasks should be learned together in multi-task learning?","author":"standley","year":"2020","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.579"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.433"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00179"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-658-36295-9_5"},{"key":"ref39","article-title":"Improved regularization of convolutional neural networks with cutout","author":"devries","year":"2017","journal-title":"arXiv 1708 04552"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00854"},{"key":"ref24","first-page":"475","article-title":"PaDiM: A patch distribution modeling framework for anomaly detection and localization","author":"defard","year":"2020","journal-title":"Proc Int Conf Pattern Recognit"},{"key":"ref23","article-title":"Sub-image anomaly detection with deep pyramid correspondences","author":"cohen","year":"2020","journal-title":"arXiv 2005 02357"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00032"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01466"},{"key":"ref20","first-page":"1","article-title":"Deep autoencoding Gaussian mixture model for unsupervised anomaly detection","author":"zong","year":"2018","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref22","first-page":"1","article-title":"Likelihood ratios for out-of-distribution detection","volume":"32","author":"ren","year":"2019","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref21","article-title":"Neural Turing machines","author":"graves","year":"2014","journal-title":"arXiv 1410 5401"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2021.3117407"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2021.3098381"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-019-01228-7"}],"container-title":["IEEE Transactions on Instrumentation and Measurement"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/19\/10012124\/10124756.pdf?arnumber=10124756","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,3]],"date-time":"2023-07-03T18:02:29Z","timestamp":1688407349000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10124756\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":51,"URL":"https:\/\/doi.org\/10.1109\/tim.2023.3276529","relation":{},"ISSN":["0018-9456","1557-9662"],"issn-type":[{"value":"0018-9456","type":"print"},{"value":"1557-9662","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}