{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T11:50:22Z","timestamp":1742644222789,"version":"3.37.3"},"reference-count":22,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/IEEE.html"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52077012"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2021TQ0165"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Trans. Instrum. Meas."],"published-print":{"date-parts":[[2022]]},"DOI":"10.1109\/tim.2022.3168929","type":"journal-article","created":{"date-parts":[[2022,4,20]],"date-time":"2022-04-20T19:31:09Z","timestamp":1650483069000},"page":"1-12","source":"Crossref","is-referenced-by-count":16,"title":["Multifeature Extraction and Semi-Supervised Deep Learning Scheme for State Diagnosis of Converter Transformer"],"prefix":"10.1109","volume":"71","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6278-6825","authenticated-orcid":false,"given":"Rui","family":"Xiao","sequence":"first","affiliation":[{"name":"State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9297-693X","authenticated-orcid":false,"given":"Zhanlong","family":"Zhang","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4572-8834","authenticated-orcid":false,"given":"Yihua","family":"Dan","sequence":"additional","affiliation":[{"name":"Department of Electronic Engineering, Tsinghua University, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0504-2459","authenticated-orcid":false,"given":"Yu","family":"Yang","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5625-9095","authenticated-orcid":false,"given":"Zhicheng","family":"Pan","sequence":"additional","affiliation":[{"name":"Maintenance & Test Centre, EHV China Southern Power Grid, Guangzhou, Guangdong, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1756-692X","authenticated-orcid":false,"given":"Jun","family":"Deng","sequence":"additional","affiliation":[{"name":"Maintenance & Test Centre, EHV China Southern Power Grid, Guangzhou, Guangdong, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRD.2011.2174164"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRD.2013.2262058"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRD.2013.2295377"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1006\/mssp.2000.1338"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2014.10.038"},{"key":"ref6","first-page":"1","article-title":"Transductive inference for text classification using support vector machines","volume-title":"Proc. 20th Int. Conf. Mach. Learn.","author":"Joachims"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/279943.279962"},{"key":"ref8","first-page":"1","article-title":"Co-training and expansion: Towards bridging theory and practice","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Balcan"},{"issue":"2","key":"ref9","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1023\/A:1007692713085","article-title":"Text classification from labeled and unlabeled documents using EM","volume":"39","author":"Nigam","year":"2000","journal-title":"Mach. Learn."},{"key":"ref10","first-page":"99","article-title":"Semi-supervised learning of mixture models","volume-title":"Proc. Int. Conf. Mach. Learn.","volume":"1","author":"Cozman"},{"key":"ref11","first-page":"1","article-title":"Semi-supervised learning using Gaussian fields and harmonic functions","volume-title":"Proc. 10th Int. Work. Artif. Intell. Stat. (AISTATS)","author":"Zhu"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1023\/B:MACH.0000033120.25363.1e"},{"issue":"2","key":"ref13","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1007\/s10509-013-1356-y","article-title":"Semi-supervised self-training of object detection models","volume":"344","author":"Sabry","year":"2013","journal-title":"Astrophys. Space Sci."},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1198\/106186008x344748"},{"key":"ref15","first-page":"3939","article-title":"Imaging time-series to improve classification and imputation","volume-title":"Proc. 24th Int. Joint Conf. Artif. Intell. (IJCAI)","author":"Wang"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2021.109555"},{"key":"ref17","first-page":"3546","article-title":"Semi-supervised learning with ladder networks","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","author":"Rasmus"},{"key":"ref18","first-page":"1","article-title":"Adam: A method for stochastic optimization","volume-title":"Proc. 3rd Int. Conf. Learn. Represent. (ICLR)","author":"Kingma"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.05.040"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TIM.2020.3005113"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref22","first-page":"1","article-title":"Very deep convolutional networks for large-scale image recognition","volume-title":"Proc. 3rd Int. Conf. Learn. Represent. (ICLR)","author":"Simonyan"}],"container-title":["IEEE Transactions on Instrumentation and Measurement"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/19\/9717300\/09760386.pdf?arnumber=9760386","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,22]],"date-time":"2024-01-22T20:23:45Z","timestamp":1705955025000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9760386\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"references-count":22,"URL":"https:\/\/doi.org\/10.1109\/tim.2022.3168929","relation":{},"ISSN":["0018-9456","1557-9662"],"issn-type":[{"type":"print","value":"0018-9456"},{"type":"electronic","value":"1557-9662"}],"subject":[],"published":{"date-parts":[[2022]]}}}